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ABSTRACT

This dissertation investigates different types of disorder problems by
using sequential procedures for on-line implementation. The problem is
considered withiu the framework of detecting abrupt changes in an observed
random process when the disorder can occur at unknown times. The focus of
this work is on quickest detection methods for cumsum procedures
implemented for different parametric and nonparametric nonlinearities and
their performance evaluation. Both the non-Bayesian (Maximum-
Likelihood) and the Bayesian frameworks are presented but the focus is
mainly on non-Bayesian methods for which detailed analysis is provided.
The use of Brownian motion approximations is also included and provides

an additional viewpoint of analyzing the performance for both the non-

Bayesian and Bayesian methods.
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L THE DISORDER AND CHANGE DETECTION PROBLEM
FORMULATION—AN OVERVIEW

A. INTRODUCTION

This dissertation presents sequential decision methods both in the non-
Bayesian (maximum likelihood) framework and in the Bayesian framework.
The focus is mainly on non-Bayesian methods, where the goal is to detect, as
quickly as possible, changes in statistical models of a random process when
these changes can occur at a random time, while the false alarm rate should
be lower bounded by some given constant.

In the classical detection framework such procedures were considered by
Wald (Wald, 1947), for which the binary hypothesis framework was
developed under the assumption was that all the observations come from
one model or from an alternative one. It was not until Page’s work (Page,
1954) in the non-Bayesian framework and Shiryayev (Shiryayev, 1961, 1963,
1965) in the Bayesian framework that the problem was extended to detecting a
change from one statistical model to a second model. Lorden (Lorden, 1971)
showed that the cumulative sum tests as proposed by Page are asymptotically
optimal when the mean time between false alarm tends to infinity, in the
sense of minimizing the average delay time for detection. Recently, Pollak
(Pollak, 1985) proved an optimality property for the Shiryayev rule.

Two types of problems depend on the time element. The first is the
disorder problem in which the given observations correspond to one

statistical model until some unknown time after which the samples




correspond to another statistical model. Hereby we will use the notations
disorder and change as synonyms, even though a disorder is referred to as a
general change in density which describes the change in the statistical
behavior of the model, a change will refer most of the time to changes in
specific parameters like mean variance, etc. The second problem is the
transient problem in which the disorder decays after some time. In this
dissertation we will focus only on the disorder (change) problem.

When a disorder occurs, the random variables we are concerned with are
the change time and the model parameters after the change. As will be
presented throughout this dissertation, the detection process refers to
detecting the change as quickly as possible while ensuring infrequent false
alarms, while the estimation process refers to estimating the change time and
the model parameters after the change. This dissertation focuses on the
detection element. The problem of joint estimation of the change time and
the model parameters is also addressed and shown to appear in an explicit
closed form in certain cases.

The question of where do change detection problems occur is next
introduced. Three typical situations in which change detection is a critical
component are considered. The first, in which the detection is used to
produce alarms during the monitoring of dynamical systems, such as failures
in sensors (Willsky, 1976,1986), detection of tsunamis and earthquake
prediction (Nikiforov, 1986), and detection of production failures (Assaf and
Ritov, 1988). Many more applications in industrial and military
environments can be considered. Survey papers for fault detection methods

are given by Isermann (Isermann, 1984), and Gertler (Gertler, 1988) The




second situation arises in the area of adaptive algorithms, were the presence
of abrupt non-stationarities in the signal causes severe errors in adapting the
gains of the recursive algorithms. Thus, an abrupt change detection
procedure is needed to improve the tracking capability of the algorithm. For a
complete survey see Ljung and Gunnarsson (Ljung and Gunnarsson, 1990).
Finally, the third type of application occurs when the change detection
algorithm is considered as an integral part of the modeling of a signal or a
system. The most popular applications are segmentation of speech signals
using switching parameter methods within AR models (Andre-Obrecht, 1988)
or various geophysical signals (Nikiforov, 1986). In such cases switching
methods within the transition matrix of state-space models (Tugnait, 1986), or
a modified Kalman filter is used to cope with changes modeled as abrupt
transitions in the measurement matrices (Shumway, 1990). Also, the
problem of outlier detection by modifying the Kalman filter was introduced

by Pena and Guttman (Pena and Guttman, 1988).

B. THE DISORDER PROBLEM FORMULATION

1. The General Disorder Problem
The change detection problem is presented within the hypothesis
testing framework, thus, requiring some statistical knowledge about the tested
hypotheses which in turn are based upon statistical models of the hypotheses
before and after the disorder. The model based framework is rich enough to
serve as a basis for the problem formulation, resulting in parametric type
tests. As it will be presented later, certain types of change detection

procedures known as cumulative sum or cumsum procedures are able to




cope with the parametric and nonparametric forms as well. Within this
framework four types of change detection problems will be considered.

Let Hp and Hy be the two (simple) hypotheses, corresponding to two
possible probability distributions Py and P; on the observation space x. If a
parametric notation is to be used, then the notation P(x|6p) and P(x | 6;) or
Po(x) and P1(x) will be used. The observations x;, x3, ... are assumed to be
independent random variables.

Type 1: Classical Binary Hypothesis Testing
This problem was considered by Wald (Wald, 1947) and can be written as:

Hp: x ~ Py,
versus a-1n
fﬁIX"PL

where the notation “x ~ P” denotes the condition that x has distribution P. In
this problem there is no time index, hence, no direct formulation of a change.
Type 2: Disorder Formulation

This problem was considered by Page (Page, 1954) and can be presented in
following manner. Let v be the unknown time when the change from Py to
Py occurred. Let P, denote the probability when the change occurred at the w*
observation. Let Py denote the probability there is no change, i.e., v = .

The problem can be presented as
Hp: x1,%2,... ~ Py nochange

versus




H,: x,x3,..,xy,.1 =~PFP, (1-2)
change at time v
Xy, Xys1,--- ~R.
If the observation record is finite and equal to say s, the detection problem
becomes a multiple hypothesis testing, since the test “looks” for at least one of
the H, (1 < v <5) to hold against Hy.
Type 3: Transient and outliers formulation:

Consider two change times v and 7 such that

Hp: x1,x3,... ~ Py
versus
Hy: x1,x2, -, X ~ Py
Xy, Xoly -0 X121 ~P;
Xp Xp1, - ~ Py (1-3)

The same arguments about composite testing can be applied here. Notice that
this framework can be extended to the so-called multiple disorder problem, in
which the observations xz, x7.1, ... ~ P (P being another probability density on
the observation space).

Type 4: Initial Condition Disruption

For model based detection schemes based upon state-space, ARMA, etc., the
initial condition is a part of the statistical model. Hence, besides the ordirary
way to model the statistical change as a change from Py to Py, a certain class of
changes can be modeled as a result from changes in the initial condition.
This problem is also time related since the change might occur at an

unknown time.




Once H; is decided, i.e., disorder detected, further questions arise, sucin
as estimating the change ume v, possibly to estimate €, and 6;, and in some
cases to diagnose which type of change actually occurred. Thus, the cotection
and estimation following the detection problems being two separate issues
can be coupled, but it is important to distinguish between them.

Both off line (n fixed) and on-line (n growin>) algorithms can be
designed for solving such types of problems, a»d as shown in the sequel differ
substantially, both from the change detection formulation and from the

performance evaluation point of view.

2. Solution Methods

The solution for such problems is a function of several factors.

a. Off-line versus On-line Tests
In the off-line formulation, a given finite record is given
X1, X2, ..., X7 and a test statistic g1 =g(x1, x3, ..., x7) 2 4 has to decide whether or
not the change occurred. In the or-line formulation, the test statistic gy =
g(xq, x2, ..., xt) 2 A has to reach a decision the first time when g; exceeds a

threshold A.

b. Criterion
For the classical detection problem (1-1), the criteria in the sense
of Neyman-Pearson (Ghosh, 1970), is based on a test which maximizes the
power or the probability of detection (the probability of deciding H; when H;
is actually true) subject to the constraint that the size or the false-alarm
probability (the probability of deciding H; when Hy is true) is less than or

equal to a given value.




As seen from equation (1-2), in the off-line framework, the
change detection problem involves multiple hypotheses testing, .or which
the Neyman-Pearson lemma is not valid (Ghosh, 1970). Therefore the test in
this case cannot be defined as one of maximizing the power since H; is not
reduced to a simple distribution but a set of distributions. In such cases, the
best property for a test is said to be Uniformly Most Powerful (UMP), i.e., tests
which have the highest detection probability for each distribution of the
alternative hypotheses H;. Therefore no UMP tests exist for change detection
problems. In this case, those UMP properties can be recovered by using
asymptotic analysis (Deshayes and Picard, 1986). In order to cope with the
performance analysis of test statistic functions the following definition is

needed.

Definition: Stopping time. Let x;, xz, ... be the sequence of independent
random variables. The nonnegative integer valued random variable N is
said to be a stopping time for the sequence if the event {N = n} is independent

Of xn+'], X,H,z, ceee D

Hence, the event {N =n} corresponds to stopping after having observed
X1, .- X» and thus must be independent of the values of the random variables
yet to come (Ross, 1989).

For on-line processing, the criteria is modified. Notice that by
using the formulation (1-2) for a large enough nuinber of observations, the
change will be detected with probability one. Thus, a natural criterion should
be the delay for detection, subject to the constraint that the size of the test is

upper bounded by a given threshold (Page 1954, Shiryayev 1963). Lorden




(1971) and Nikiforov (1983) use a slightly different versicn of the delay for the
on-line problem:

Let S, denote the test ctatistic at time n. Let N be the stopping
rule, and let A, be a generalized threshold. Then:

N =inf{n: 5, 2 Ay) (1-4)

defines the stopping rule and stopping time. See Figure 1.1.

A Observations

Ao Aty ——

Doint ¢i change

X n

>
\Y% n
S nA Stopping Rule A
Change
detection
>
v N n

Figure 1.1. General Characteristics of the Detection Mudel. The observation
sequence {x,) is transformed into a sequence {S,}. A change in the model
structure of {x,, results in a cumulative departure of {S,}. The change is

detected by comparison of {S,} with a generalized threshold {4,,)
(fro.n Segen and Sanderson, 1980).




The worst case average delay D (Lorden, 1971) is defined by

D= E{NlHl} = s‘g}l)esssupEv{(N -v+ 1)+|x1,x2,...,xv_1} (1-5)

where (a)* = max(0,a),
where E, denotes *he expectation of the change time under the probability
law Py, where Py denotes the distribution of the sequence x1, x2, ..., under
which xy is the first term with distribution P1. In other words, D is the

smallest value such that forany v=1,2, ...
EV{(N - v+1)+|x1,x2,...,xv_1} <D

meaning that this “minimax” type criterion defines the best worst case for
delay.

Thus, the criteria is defined in terms of the quickest detection of a
change subject to the constraint that the size of the test is upper bounded, i.e.,
the desire f-r large mean time between false alarms T, where T is also defined

i~ terms of the stopping time
T = F{N|H,} (1-6)

which denotes the expectation under the no-change hypothesis Ho. The pair
(T,D) will specify the performanc. of a given algorithm.

Notice that in the transient or multiple disorder setting of the
equation (1-3), a fast detection is necessary since if 7-v+1<D the transient
canno: be detected.

Thus, for the on-lirie framework, this natural criterion should lead to

the optimal stopping rule, and the question that arises: are there test statistics




which are optimal in that sense? A positive answer will be presented in the
sequel.

Different types of criteria can be used for deriving optimal stopping
times for change detection, see Bojdecki and Hosza (Bojdecki and Hosza, 1984)
and Pelkowitz (Pelkowitz, 1987).

For the off-line problem, this question is more difficult, because as
was shown in equation (1.2), change detection problems are multiple
hypotheses problems for which there exists no optimum test in the classical
sense of power, (Neyman-Pearson lemma), hence, no UMP tests exist. In
such situations, an asymptotic analysis for which UMP tests can be recovered
is of interest. Deshayes and Picard (Deshayes and Picard, 1986) showed that
UMP tests exist for likelihood-oriented methods in the sense of large

deviation asymptotic analysis. (Sample size goes to infinity.)

c. Optimal Stopping Rules
The off-line point of view was addressed in the last section where
it was shown that optimality exists only in the sense of asymptotic analysis.
For the on-line point of view, in the non-Bayesian framework, the only
optimality results are given by Shiryayev and Lorden. Lorden (Lorden, 1971)

showed that for some constant 7, the stopping rule N must satisfy:
Eg{N}=E{N|v=w}2y.

The speed in which a stopping rule detects a (true) change of distribution is

evaluated by (1-5)

supesssupEv{(N - v+1)+lx1,x2,...,xv_1}.
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Lorden showed that a certain class of stopping rules is asymptotically (y —e°)
optimal, and that the cumsum procedure (Page’s test which can be described
as repeated sequential tests) belongs to this class.

In the Bayesian framework, Shiryayev (Shiryayev, 1968, 1978)
solved the problem. He considered a cost function whereby one loses one
unit if N<v, and loses ¢ units for each observation taken after vif N> v. The
prior on v is assumed to be geometric. Shiryayev showed that the stopping
rule prescribes stopping as soon as the posterior probability of the change

having occurred exceeds a fixed level.

d. Use of Prior Knowledge

For change detection problems, prior knowledge can be useful in
two cases:

The first case is related to the problem of estimating the change
time after detection. From the Bayesian point of view, the knowledge of the
statistical nature of change time makes up the prior needed for such a test.
Such knowledge on the distribution of tiie change time (or initial conditions)
will assist in the quickest delay detection, i.e., estimation of the time change.
In the non-Bayesian approach this is equivalent to assuming a uniform prior
distribution over the observation set, resulting in a detector which computes
the likelihood function for all possible disorder times.

The second case is the estimation following detection of the
statistical model after the change of the parameter set 6;. For test procedures
implemented on line, the use of prior knowledge on the parameters set 6;, 6,

€ © improves the quickest detection since in such situations, only a short
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sample is available from the true change time to the detection time, thus, it is
difficult to identify 6.

In this context, we shall consider two different forms of the prior
on the distribution after the change. The first form of prior uses the
composite hypothesis testing framework. As an example, the Darmois-
Koopman family of distributions (Govindarajulu, 1975, Siegmund, 1985)
which is presented in the sequel, allows suitable parametric tests, using the
assumption that the statistics after the change have a form of a one parameter
exponential distribution. The second form of prior uses the popular method
of multiple models whenever the set of parameters 6, is finite. Such
methods can be found in the literature (Anderson and Moore, 1979).

The problem of detecting the change time and estimating the
statistical model after the change is a difficult task because of the reasons
given. Except for cases where the solution to the detection-estimation can be
made explicit, like estimation of the jump amplitude in the case of additive
changes in Gaussian linear models (Willsky and Jones, 1976), the combined
detection-estimation solution cannot be shown in a closed form. This point
is further discussed in Chapter IIl when the generzalized likelihood ratio
algorithm (GLR) is applied to linear models.

This dissertatior focuses on the methods of the quickest detection
problem which provides in the case of detection of jumps in the mean, a
convenient way to estimate the unknown jump. However, it will be shown
that a lot of complicated problems like changes in spectral properties or
eigenstructure (changes in State Space models, AR models or ARMA models)

can be transformed to changes in the mean of a statistic function g,, enabling
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the use of quite easy detection schemes to detect rapid changes in the
dynamics of the signal model. As shown in the sequel, such detection
algorithms are based on the cumsum procedure which provides a tradeoff of

computation efficiency and complexity.

3. Performance Evaluation

In the off-line processing, the process is observed only over a finite
interval, hence only a finite number of samples is used. The problem is then
considered as that of classical hypothesis testing (1-1). In this case the
performance is measured in terms of probability of detection versus the
probability of false alarm.

In the on-line processing, the approach of “quickest detection” is
adapted as the performance criterion used in sequential analysis. This
approach is used by Nikiforov (Nikiforov, 1979, 1980). For this setting, the
terms run length and average run length (ARL) will be used in order to
determine the number of observations needed to reach a detection decision.
This function will be shown to be the main tool in the performance
evaluation of the test procedures. The first time the test statistic, i.e. the
stopping rule (statistic used to determine the change) crosses the pre-
determined threshold according to desired performance, is called the stopping

time or sometimes also the Markov time (Shiryayev, 1978).

C. MODEL BASED METHODS
In designing the change detection/estimation algorithms, the philosophy
developed in Chow and Willsky (Chow and Willsky, 1986) distinguishes two

tasks which are depicted in Figure 1.2.
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The first task is the generation of change indication signals (residuals)
sometimes also called error signals. These signals are designed to reflect the
possible changes in the measurements or models and to make a subsequent
detection possible. These signals are designed to have a certain mean (usually
zero) and a white noise correlation signature when no change occurs. Tlis is
referred to as the “white noise” hypothesis. In general the mean value or
spectral properties change under a disorder.

The second task is design of the stopping rules (or decision rules) based
upon these residuals.

Sometimes an additional task diagnostics is added. This is the problem of
estimating the origin of the change (for example: which pole location
changed). A broad class of change detection methods makes explicit use of a
mathematical model of the observed system or signal. For example, the
setting of the system or signal in a state-space form enables the use of Kalman
filtering methods to generate the residuals (innovations in this case). This

twofold problem will be presented next.

measurements | Model Residuals Statistical Signature Stopping | _inference
[ | Testing Rule
| | |
-«— Generation of Residuals—>»e Change >

' Transformation g() : Detection \

Figure 1.2. Model Based Change Detection Scheme as a Twofold Problem
(from Gertler, 1988)
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1. Generating the Change Indication Signals (Residuals)
As shown in Figure 1.2, modeling is an integral part of the change
detection process, usually for creating “white” residuals under the “no
change” hypothesis. Using the state-space setting, residuals may be generated

in a number of different ways, which will be presented briefly.

a. Straight Input-Output Residuals (Gertler, 1988)

Given the state-space model
x(n+1) = Ax(n) + Bu(n)
y(n) = Cx(n)

an equivalent input-output model can be presented by using the shift
operator with matrices G(z) and H(z), z being the shift operator and H being a

diagonal matrix:

H(z) - y(n) = G(2) - u (n)

where

G(2) = C[adj(1z-A)B]
H(z) = det (Iz-A)l.

Defining
q(mT = [u(n),y(m]T

F(z) = [G(z),-H(2)]

then the input-output equation can be written as:

F(z) - q(n) = 0.
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Consider now the model matrix F(z) which represents the discrepancies
between the input-output models G(z) and H(z), and the true system G(z) and
H(z):

F@) = [G(z), -H )]

where

G@) = G(z) + AG(z,); H(z) = Hz) + 4H(z,1).

Such discrepancies may account for plant faults or changes. Applying this
equation to the measurements {(n) with the model matrix F(z) yields the

residuals vector e(n):

F(z)- &n) = e(n).

b. Filtering and Parameter Identification Methods

A popular solution (Willsky, 1976) consists of monitoring the
innovations or the prediction errors, using estimation filters or parameter
identification methods. Using the optimal state estimator, the Kalman filter
is designed according to the “normal mode” or no change situation. If prior
knowledge is known about the change or if a diagnosis is required in addition
to detection, a possible solution consists of using a bank of Kalman filters
designed according to all the possible models for each hypothesis (see Figure
1.3). Notice, that the Kalman filter produces under the null hypothesis zero
mean and independent residuals. Consequently deviations from this
behavior are indicators of change. However, in some practical problems, it
may be necessary to monitor a function of the innovations rather than the

innovations themselves (Basseville, 1988).
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- Filter #1
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Figure 1.3. Filtering Methods for Generating the Kesiduals.
(a) “normal mode” filter
(b) generating error signatures due to possible change hypotheses
In identification-based methods, a residual quantity is defined in
relation to the plant parameters. The plant is identified in a fault-free
reference situation, then repeatedly on line. The results of the latter, are
compared to the reference values and a parameter error (residual) is formed.

Remark: these model-based methods do not include explicit model switching.
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In Chapter VI such methods will be described, thus enabling us to modify the

Kalman filter to detect the change.

¢. Redundancy Methods

These techniques are used primarily for failure detection (sensor
failures). Two classes can be distinguished. The first class is direct or physical
redundancy. Using several identical sensors measuring the same quantities,
the differences between each possible pair may reflect a change. These
residuals are processed using voting methods (Willsky, 1976). Another
approach consists of searching subsets of measurements for inconsistency,
thus indicating changes.

The second class is indirect or analytical redundancy. This
method monitors of all the existing relationships between the inputs and the
outputs that are zero under the hypothesis of no change exists. These
techniques were studied by Deckert (Deckert et al. 1977), Chow and Willsky
(Chow and Willsky 1980, 1984), and others.

2. Statistical Testing (stopping rules)

The resulting residual vector contains the combined effects of the
changes and the noise (as well as the modeling errors). Two approaches can
be considered.

The first consists of the deterministic modeling of the changes. (It is
important not to confuse the random nature of the change time and (usually)
the change magnitude with the deterministic modeling of the change). For

example, consider the case:

Xn = 9,, + Ny Ny~ N(0,0'z)
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where

6 1<n<v-1
6n=
6h n2v

v being the change time (random). Therefore, the effect of changes on the
residuals has to be separated from that of the noise. This is done by statistical
testing, making use of the assumption of the the non-changing statistical
structure of the noise, versus the changing statistical nature of the
observations (change in mean, variance, etc.).

In the second approach the observed changes in the time series are
modeled in a statistical manner. Therefore, the noise is part of the modeling.
Hence, the statistical nature of the changes can be modeled as changes in the
noise characteristics.

Several testing methods will be described briefly, while the main part

of the dissertation will focus on a subset of them.

a. Compound Scalar Testing (x 2-type off-line test)

Consider a single scalar test statistic

where e(n) is the residual vector and S, is the covariance matrix of the vector
e. Then, under the no change hypothesis, the residual vector e(n) consists of
normal i.i.d. components. Hence, the threshold A follows a chi-square
distribution with p degrees of freedom (p being the vector size or number of

residuals). Recursive chi-square tests are also available.
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b. Likelihood-oriented Methods
The likelihood ratio approach is a general tool for change
detection. Different methods can be considered (Ghosh, 1970; Willsky, 1980).
For example, consider a test which compares the hypothesis H; of nonzero
residual mean to the null hypothesis Hy of zero mean. The decision is based
on the likelihood ratio between the joint distributions of the residuals

o = P{e(1),e(2),...,e(m)|H}
Pe(1),e(2),...,e(m)Ho}

(1-7)

The numerator and the denominator, respectively, are the Probability
densities of the observed time series under the two hypotheses. If the
residuals are independent, then (1-7) is easy to compute. Under the

hypotheses testing given by (1-2):

noy_ 1Ty hle) & Pe)
Si(e)= w’g Pole;) ,Elog P(l)(ei)'

If the residuals monitored are the innovations of a Kalman filter, then it can
be shown (Anderson and Moore, 1979) that the distribution of these
innovations is given by the conditional distribution of the observations x;
(conditioned by their past values), hence, (1-7) can be written in the general
form

Pl(xilxi_l,...,xo)

. (1-8
Po(x,-]x,-_],...,xo) )

n
S = Elog
=1

This kind of test is called cumulative sum test (or cumsum test) and can be

written as
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51 =3 glx) (1-9)

i=k
where
(x,-lx,-_l,. . .,xo)

8(x) = log )
Po(x,-|x,-_1,...,x0)

Notice that in this case the computation of S'f is recursive.

The tests based on (1-8), (1-9) are stopping rules (i.e., tests which
enable us to estimate the change time v), based upon the knowledge of the
parameterized densities before and after the change. In this case the estimated
stopping time can be found by using the maximum likelihood estimate (MI

under Hj, namely

V= aggvn;\gxsz. (1-10)

In general, the statistical properties atter the change (i.e., using the
parameterized format of Py as ;) are not known. Hence, the cumsum test
(1-9) can be used to reach the change decision

Hy
max maxS”(6y,6,)2 A. 1-11
1sv<n 6y V( 0 1)Ho ( )

This test is called the generalized likelihood ratio (GLR) test (Willsky and
Jones, 1976) and involves a double maximization of high computation cost.
Only in special cases like additive changes in linear systems modeled in the
state-space representation, it can be shown (Willsky and Jones, 1976) that the
effect of the resulting changes in the innovation vector e, are also additive.
Therefore, in the case of Gaussian state and observation noises, there are cases

for which explicit solutions for 6; exist. For example, if 61 represents the
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mean after the change. Then, the maximization over 6; is explicit (Basseville,
1488), resulting in joint estimation of the vector (v, 6;) by recursive
computation of S;' and ¥,.

The theoretical optimality of the GLR has been investigated
recently (Deshayes and Picard, 1986) from the off-line point of view. They
show that under asymptotic exponential decay rates of the error probabilities
a,p (where a is the Type 1 error probability or the false alarm probability and
similarly B is the Type 2 probability or the probability of detection) and for
specific families of distributions, the GLR tests are UMP.

Remarks
¢ The stopping rule based upca a cumsum s.atistic can use any general
nonlinearity g(). For example, instead of the probability ratio of
conditioned observations as in (i-9), a probability ratio of the

observations x; can be used. In this case

8(x;) =log

* Both off-line and on-line implementations (using “sliding” windows)
can be used. Examples for using this :nethod for ARMA and AR
models can be found in the literature (Segen and Sanderson, 1980,

Basseville, 1986, ind Basseville and Benveniste, 1983).

¢. The Statistical Local Aprroach
This approach is used in order to overcome the main drawback of
the GLR test, namely its computation cost due to the double maximization.

This approach was introduced by Nikiforov (Nikiforov, 1986) for on-line




detection of changes in spectral characteristics of ARMA models. The original
idea ccnsists of looking for small changes in models and using a special type
of Tayler’s expansion of the log-likelihood function. Thus, the nonlinearity

£ (', becomes

d
8(xn) = agpo(xnlxn-lr-“)l oo (1-12)

v

Deshayes and Picard (Deshayes and Picard, 1986), showed that for the statistic
g!x,’ there exists a central lirrit theorem. Any change in 0 is reflected as a
change in g(x,), for which stopping rules based on cumsum tests can be

designed.

d. Bayesian Oriented Methods

Bayesian oriented methods are based upon some prio statistical
knowledge on the change time, or uses some knowledge on th : switchiny
model used to describe the statistical behavior of ¢ changes. The use of
hidden Markcv models to describe the changes in state-space models
(Shumway, 1990) is very popular, and leads to some change detection
algorithms. However, in the Bayesian framework, it is very diffi.ult to find a
general solution because of the use of different cost functions or different
prior assumptions. As mentioned in Section B.2 of this chapter, Shiryayev
(Shiryayev, 1977) introduced a Bayesian competitor as an alternative to the
Page cumsum test. Recently, Pollak (Pollak, 1985), proved an optimality

propertv for the Shiryayev-Roberts rule.




e. Heuristics Associated with a Two-model Approach (Basseville,

1986)

This method called the “two models approach” is in fact a
simplification of the GLR test. Implementation of GLR tests leads to
“boundary” problems, because models are not very reliable when identified
on short cegments. In order to overcome this problem, the two model
approach was introduced. These algorithms are less efficient than likelihood

ratio methods but more efficient than the tests based upon the local approach.

D. ORGANIZATION OF THE DISSERTATION

This dissertation focuses on the on-line analysis of detection algorithms,
hence, the quickest detection methods are explored. Both the non-Bayesian
and Bayesian points of view are investigated but the focus is on non-Bayesian
(maximum likelihood) methods. In this context, sequential analysis and a
certain type of cumulative sum procedures which form a generalization of a
test first studied by Page (Page, 1954) to detect a change in the distribution of
random variables observed at random times are investigated. The Bayesian
point of view is also included. Shiryayev (Shiryayev, 1978) results are shown
to play a key role in any Bayesian approximation.

Different disorder types (Type, 2, 3, and 4) are investigated throughout the
dissertation in the sequential (on-line) detection framework.

The body of this dissertation is divided into four groups as shown in
Figure 1.4. Chapters II and III form the maximum likelihood solution of the
detection problem while Chapter V presents the Bayesian approach.

Chapter IV provides additional tools to analyze the performance of both the
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non-Bayesian and Bayesian methods by using diffusion type approximations.
Finally, Chapter VI presents a MAP estimator to a Type 4 problem, namely,

discontinuity type disorder.

I Type I, I, and II Disorder Problems ¥ Type IV |
—_
| P i
Maximum Likelihood Diffusion )
Methods Approximations Bayesian Methods
C ' T ] ‘ ] - | 1 C 3
CHII CHIII CHIV CHV CH VI
Page Examples: Brownian Extension  Disruption
Procedure, Motion of in Initial
Parametric = Approximations Shiryayev's Conditions
Performance and I l Procedure
Evaluation Non-parametric = >
Detection
CHVII
Conclusions

Figure 1.4. Sequential Methods for Quickest Disorder Detection

Each chapter includes an introduction and a summary section which will
assist in relating all the topics presented throughout this dissertation. An
appendix which summarizes the basic concepts of Lypothesis testing and

detection theory is also provided.
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II. SEQUENTIAL METHODS FOR QUICKEST DETECTION OF CHANGES IN
PROBABILITY: THE NON-BAYESIAN FRAMEWORK

A. INTRODUCTION

Consider the observation process {x,} with probability density Pg(x,) or
conditional probability density Po(xpn | xpn_1, wr x0) depending upon an
unknown parameter 6. This parameter can describe two different situations:
In the first situation, 6 can be for example, the mean or variance of the
density of the time series, and will reflect directly the statistical properties of
the time series. In the second situation, using some convenient
parameterization of a system or signal denoted by 0, i.e. the state-space
representation or ARMA modeling, 6 describes the dynamics of a system or
signal.

In the context of detecting jumps (sudden changes) in the parameter set 6,
we are interested in detecting changes in the dynamics, or in the statistical
properties of complicated structures.

Since the jump time is unknown, the problem is twofold: detection of
the change, and estimation of the change time. In this chapter we will focus
on the detection problem only. As shown in the last chapter there are
different issues that must be addressed: on-line versus off-line
implementation, parametric versus non-parametric methods, etcetera. These
issues were briefly presented in Chapter I, and are investigated in more detail
in the context of change detection in this chapter. In particular we will be

addressing the following points:
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1. Off-line versus On-line Viewpoints

Even though the final gcal is to implement on-line (sequential)
procedures, the off-line viewpoint is significant, since it can be used to derive
on-line tests. This point will be clarified in this chapter. These two
viewpoints differ in: (a) problem formulation and (b) performance evaluation
as related to different criteria.

In the off-line formulation, the change detection problem is
implemented as multiple hypotheses testing, for which the Neyman-Pearson
lemma is not valid so that no UMP tests exists. Thus, the criterion from this
viewpoint is that of classical detection problems, namely: size and power of
the test.

In the on-line formulation, the criteria is modified to detect a change
in the parameter 6 as quickly as possible. In the on-line point of view the

detection is performed by a stopping rule of the general form

Sy being an appropriate test statistic (see Chapter I).

The performance of a stopping rule is evaluated by T the mean time
between false alarms (1- 6), and by D the delay for detection (1- 5) as proposed
by Lorden (Lorden, 1971). This is a “minimax” type of average delay referred
to as the best least favorable change time.

The difference between the off-line and the on-line viewpoints is
significant: whereas no optimal test does exist in the off-line framework,
optimal stopping rules do exist in the on-line framework for independent

identically distributed (i.i.d.) sequences with known distributions before and
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after the change. Moustakides (Moustakides, 1986) extended this result to the
non i.i.d. case. Since in this chapter we take the non-Bayesian approach,
another difference is viewed: In the off-line processing we assume a uniform
prior distribution over all the observation set, resulting in a likelihood
detector which computes the likelihood for all possible disorder times,
whereas in the on-line approach, the disorder time is assumed to be an
unknown parameter. Lorden showed (Lorden, 1971) that a certain class of
stopping rules called cumulative sum tests (cumsum) are optimal in the
sense of his criteria. The cumsum tests form a rich enough family of tests,
and are the focus of investigation of this chapter. In particular, the test called

the Page-Hinkley stopping rule is investigated in depth.

2. Composite Testing
As mentioned earlier, optimal stopping rules do exist in the case of
i.i.d. sequences with known distributions before and after the change. When
the distribution after the change is not known, a composite framework needs
to be used. This issue is addressed by using the Darmois-Koopman

Distribution for a one parameter exponential family.

3. Parametric versus Non-parametric Methods
The nonlinearities or transformations g(:) used for the cumsum
detection procedures (1-9) can have a parametric or non-parametric form
(sign, rank tests, etc.). The analyses will provide a general framework which

can be used for either type.
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B. ORGANIZATION OF THIS CHAPTER

The main goal of this chapter is the analysis of sequential methods for
change detection, namely, the cumsum procedures and in particular the Page-
Hinkley stopping rule. The purpose is to set a general framework in which
the transformation (nonlinearity) used can be of a general form (different
parametric and non-parametric forms). Thus, the following two sections (C
and D) can be considered as a “guided tour” through theorems and results
needed to understand and analyze cumsum procedures and their
performance (presented in Sections E and F).

In Section C, sequential tests known as one-sided and two-sided Wald
tests are presented in the classical detection formulation. Some basic
theorems (Wald identity) which are shown to be important for the general
disorder or change detection are presented.

In Section D, the sequential tests implemented with the log-likelihood
function known as the Sequential Probability Ratio Tests (SPRT) are
presented. Optimal properties of these tests are shown. Performance
evaluation of the one and two sided SPRT, known as Wald approximation
are analyzed. Within this framework, composite SPRTs using the Koopman-
Darmois family of distributions are presented. Basic performance measures
in the presence of strong ar.d weak changes are shown.

In Section E, we introduce the cumsum stopping rules in the on-line
framework (using Lorden'’s criterion). The Page test is presented and shown
to be as a repeated one-sided Wald’s test. Both the off- and on-line

viewpoints are presented. Observing the renewal property of cumsum tests,
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using Ladder variables and results from queueing theory, new aspects of
cumsum tests are addressed. The Page test is also shown to be a maximum
likelihood detector. Finally, optimal properties of the Page tests are presented;
this test is shown to be optimal in the sense of Lorden criteria.

Section F presents the performance evaluation of Page’s test. The run
length function is shown to be the primary tool needed for the analysis of
delay and average false alarm rate of the test. Using the results in Sections C
and D we derive two results known as Lorden’s and Wald’s approximations.
Finally, the asymptotic performance framework is introduced and used for
two important results: first, the asymptotic approximation of the run length
function, and second, the generalization of Lorden’s results to general
nonlinearities, other than the log-likelihood transformation used in the Page
stopping rule. A general framework of asymptotic performance evaluation of
Page’s test is provided. The resulting measure is shown to be used for any
nonlinearity in the presence of various noise distributions.

Section G presents a short summary of the main results of this chapter.

C. SEQUENTIAL TESTS

An alternative approach to the fixed size tests is to fix the desired
performance and allow the number of measurements to vary in order to
achieve this performance.

To formulate the problem, suppose that the observations {x;:k =1, 2, ...}

are i.i.d. and distributed according to

Ho: Xik~Py, k=1,2,..

versus (2-1)
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Hyi: Xxk~Pq, k=1,2,..

where Py and P; are two possible distributions. A sequential test is defined by

the pair of indicator sequences (¢,d) where:
¢=1{dk=0,1,2, ..} is the stopping rule indicator, (¢: X" — {0,1}),
d={d:k=0,1,2,..}is called the terminal decision rule.

For an observation sequence {xx: k =0, 1, 2, ...} the rule (¢,d) makes a decision
d(x1, x2, ..., xn) whether or not any change occurred. In particular, sequential
tests can be described as follows: Continue sampling as long as
#(x1, x2, ..., xn) = 0, and stop when ¢(x1, x2, ..., xn) = 1. We define two kinds of
tests: two-sided and one-sided.

The two-sided sequential test is based on the definition of the cumulative

sum:
n
Sn = zg(xi)
i=1 (2 _ 2)
So=s
where g: R = R is a memoryless function of the observations, and s is called

the initial score.

We detect a change according to the following stopping rule:

[0 if S, e(a,b) continue

O,(x1,X5,...X, ) =
(3132 2) ([1 if S, (a,b) stop

where g, b are the stopping thresholds; b < 0 < a.

Also, the terminal decision indicator is given by:
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g 0 ifS, <b nodisorder
n(X1,X2,...Xn) = 1 ifS, 2a disorder.

The stopping time N (sometimes called the sample size or the run length

of the test) is defined as:
N =inf{n: S, e (a,b)}

and the exit times are defined by:

Ng = inf{m: S, 2a} (2—4)
Np=inf{n: S, <b}
The error probabilities for the two-sided tests are defined as:

a=Pr{Sy > aH = Hp}
B =Pr{Sy <bH = H;}.

In classical detection theory, a is defined as the probability of false alarm, and
B is the probability of miss. In terms of hvpothesis testing the acceptance zone
w, is defined as the zone where x; e w, or x; ~ Pg. The rejection zone w, is
defined by xx € w, or x4 ~ Py (disorder zone). The indifference zone w; is
defined by xx € - w,-w, (See Figure 2.1).

The one-sided test is defined by letting: b — —o

( _ 0 ifS, <a continue
Onl(x1,%2,...xp) = 1 ifS, 2a stop
ey (2-5)
0 ifS, <a
dy(x1,%7,...2,) = "
n(%1: %2, Xy) {1 if S, 2a disorder
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and the stopping time is given by

N =inf{n:S, 2 a}
=eo S <a

The error probabilities are defined in this case as:

a =Pr{Sy 2 a|H,}

B =Pr{Sy <aH;}.

Sn
a H].wr P’
SO u).
1
N
Nﬂ
b
Hywy

Figure 2.1. Two-sided Sequential Test

1. The Fundamental Identity (Wald’s Identity) of the Sequential
Analysis

This identity forms the basis of subsequent analysis for the Operating

Characteristics (OC) and ARL functions of a Sequential Test (ST). It gives a

convenient way to derive the moment of the sample size required to

terminate the ST.
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Theorem (Wald, 1947):

Let x1, x2, .., be independent random variables and let
S, = Z:=1 g(xx). LetST(a, b, S,) be any sequential test of Hy: 6 = 6y against Hy:
0 = 6 based on i.i.d. {g(xp)}, and let N be the stopping time for this test.

Let yi(h) denote the moment generating function of the random

variable g(x) under the hypothesis H;:

v;(h) = E{exp(g(x)-h)|H,-} i=0,1
for every real h for which w;(h) is bounded. Then, if P(g(x)=0|H;) <1 and
P(Ig(x)|<oo | Hi) =1, we have:

E{exp(SN -h) zy,-(h)]”” |H,-} =1 i=0,1 (2-6)

The proof can be found in Ghosh (Ghosh, 1970, p. 208) or Feller
(Feller, 1971, p. 603).

2. Applications of Wald's Identity
As a direct corollary to Wald’s identity, immediate results for the

ARL function can be obtained:

define z=g(x),

then, the average run length (ARL) is given by Govindarajulu
(Govindarajulu, 1975):

E{Sn|6; , ,
E{N|6,-}=~é—{—z"%}l if E{2]6;} = y;(0) % 0 -
Els2 6. ’ . 2-7
E{N|9,-}=-E-{{:';T{a} if E{z]6;} = v;(0)=0




Bounds on the stopping thresholds can be associated with the ST(a, b, g)

a slogl-;—
(2-8)

b2 log——B—.

1-a
The strict equalities hold if and only if b <0 < a4, and in terms of the error
probabilities for la, bl > 0:
a<(1-B)e*
(2-9)
B<(1-a)eb.
These approximation are known as Wald approximations and were derived
by ignoring the “excess over the boundaries” (Siegmund, 1985). Notice that

we can get yet cruder inequalities when we consider the asymptotic case

where a4 0, 1 0. Then:

3. Comparison of Sequential Tests (ST) and Fixed Sample Size Tests

(FSST)

Our object is to investigate the number of samples saved by an
ST(a,b,g) over the corresponding optimum FSST, both designed to achieve
the same performance (a,f).

The relative efficiency of ST(a,b,g) at 8 is defined (Ghosh, 1970) by

_ n(a,B)
RE(6) = E{N!6}




where n(a,p) is the sample size required by FSST test and E{N|6)} is the ARL
function of the ST test, both designed to achieve the same performance («,f).
It can be shown (Poor, 1988) that for the case of a simple sequential detection
of a constant signal in the presence of white Gaussian noise, using a
likelihood ratio detector for both the ST and the FSST, the limiting RE is
given by

lim RE=4.
a=§-0

Thus for vanishingly small error probabilities (with o = ) the SPRT requires
on the average only one-fourth as many samples as does the FSST test.

Further discussion can found in Ghosh (Ghosh, 1970).

D. SPRT TESTS
When the test procedure given by (2-2 and 2-3) uses the the log-likelihood

ratio as the nonlinearity ¢/x)

dP(X|9])
= log ———=~
8(x) =108 o o)

the sequential test is calied the sequential probability ratio test (SPRT). The
relation between any ST(a,b,g) to SPRT (A,B) is given by

A=e% B=eb
where

b<V<a and 0<B<1<A.

The bound approximations (2-8), (2-9) can be converted to SPRT test terms by

placing e¢ = A and e? = B.
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The SPRT test has a fundamental property whicii is extremely important
and wil! be used in the sequel (Therrien, 1989):
under disorder: E{g(x;) | 6}=20

\ (2-10)
under no disorder: E{g(x;) | 6} <0.

In the following sections, several properties of SPRT test will be
presented, and the two- and one-sided “PRT tcests will be analyzed, followed

bv the composite hypothesis framework for SPRT.

1. Optimal Properties nf SPRT
For testing a simple hypothesis against a simple alternative with i.i.d.
observations, the SPRT test is optimal among all sequential and fixed sample
size tests in the sense of minimizing the expected ruit iengin bouih under Hp
and under H; among all the tests havirg no large error probabilities. The

fol‘owing theorem establishes tis result.

The Wald-Wolfowitz Theorem (1948):

Among all tests (FSST and ST) ior which Pr{accept H; lHo} < ¢, and
Priaccept Hol H) < B and for which E{N |6} < i =0,1; the SPRT with error
probabilities & and 3 minimizes both E(N | 6y} and E{N| &}. s

The proof can be found in (Ghosh, 1970). The optimal property of the

SPRT test can be viewed as analogous to the Neyman-Pearson lemma.

Definition (Wijsman, 1960):
A SPRT is said to have a monotonicity property if when the upper
stopping bound of the SPRT is increased and the lower bound is decreased.

then at least one of the error probabilities decreases.
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Theorem (Lehmann, 1959)

Let xy, x, ... be independent random variables having probability
density P(x;6) which has monotone likelihood ratio. Then any SPRT for
testing Hg: 6 = By against H;: # = 6; (6p < 6;) has a nondecreasing power
function. 0

The proof can be found in Lehmann (Lehmann, 1986).

2. The Termination Property of SPRT
The SPRT test is a closed test if and only if, the termination property
holds for every 6 e 6. When g(x;) are i.i.d. any SPRT is closed under the
following mild restriction (Poor, 1988):

suppose that for any 6 e 6, g(x;) are i.id. random variables and

P(g(x) | 6) < 1, then:

¢ lim Pr{n> N|6}=0.

fn—>c0
* there exists a t9>0 such that the moment generating function Elent| 6)
exists for all real t< tg.

This means that the entire statistics of n can be found. The result is
that the SPRT or the ST([/(1-),[(1-B/al)) based on Wald’s approximations
are always closed. Ghosh (Ghosh, 1970) extended the result to the situation
8(x;) are nou i.i.d.

Another optimal property of the SPRT was shown by Wald which
established a lower bound on the ARL of competitors of the SPRT. This
result will be presented in the sequel (2-24) when presenting the problem of

composite hypothesis testing.
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3. The Operational Characteristics (OC) and AKL Functions of Two-
sided SPRT Tests
The use of Wald’s identity (2-6) forms the basis of certain bounds for
the OC function Q(6) and ARL functions for the SPRT.

Wald’s Approximations
Wald’'s approximations are based on the use of the moment
generating function of g(x) (2-6) provided that we can find two nonzero real

numbers hg and hy such that
vi(h) = E{lexp(h-g(x)J6:} =1 i=0,1 (2-11)

Existence and uniqueness of such roots are guaranteed when g(x) has a
nonzero mean and satisfies certain other conditions (Feller, 1971).
The key results for our purposes is that yi(h) =1 has:

* one and only one nonzero root
—o<h(6)<0 if E{g(x)|6}=Eg{g(x)}>0
(2-12)
O<h(@)<e if E{g(x)l6}=Ep{g(x)}<0.
¢ No non zero real root if E{g(x) | 6} = 0.
When we try to detect a change from a negative trend E{g(x)16p} <0 toa
positive trend E{g(x) |61} > 0 then, it implies that h(6;) < 0 < h(6y).

Notice that the roots are functions of two parameters: the probability

density of the observations P(x) and the nonlinearity g(x). The approximate
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formulas of SPRT test ST(a,b) for the OC and ARL are derived when g(x;) are
iid. and b < 0 < 4, using the assumption of no excess of S, over a and b.

Lower bounds for the ARL function of two-sided SPRT test under
hypotheses Hp and H; in terms of the error probabilities are given by Wald
(Wald, 1947):

1-a)log(B/1-a)+alog(1-B/ a)
Eo{g(x1)}

L(90)=Eo{N}2( if 6 = ;.

(2-13)
Blog(B/1-a)+(1-B)log(1-B/ @)
Ey{g(x1)}

L(8,) = Ey{N} 2 if 6=6,.

Bounds for the operational characteristic function Q(6) are given by
Ghosh (Ghosh, 1970):
* For detecting a change of positive trend (upward change) h(6p) > 0:

exp{h(6)-a}-1 <Q(0) < 8(8)exp{h(6)-a}-1
exp{h(8)-a} - n(8)exp{h(6)-b} " 8(0)exp{h(6)-a} - exp{h(6)-b}

* For detecting a change of negative trend (downward change) h(6p) < 0:

exp{h(6)-a}-1 n(8)exp{h(6)-a}-1
exp{h(6)-a} - 8(8)exp{h(6) b} 1(6)exp{h(6)-a} - exp{h(6)-b}

where (2-14)

<Q(8) <

n(6) = _inf éE{eXP{h(G)'g(x)}

1<é <o

5(6) = Oirélfd éE{exp{h(O)-g(x)}

exp{n(8)- g(x)} < %;9} >1
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Recall that for any test, the OC should result in Q(6y) 2 1-a, and Q(6;) < B (see
Appendix). Thus, the motivation is to find bounds for the ARL in terms of
the OC function and the stopping thresholds a,b. These upper and lower
bounds for the ARL are given by Ghosh (Ghosh, 1970):

ot 7(9)1121{;5)('2} +bQ(6) E{3(x)6}>0

N a[1-Q(6)]+b2Q(6)

L(6)= Eg{N}« E{gz (x)le}

E{g(x)6}=0 (2-15)

, la+7(8)[1-0(6)]+ bQ(6)

L E{g(x)6}

E{3(x)6} <0

where y(8) = srligE{g(xl)—r[g(x) 2r>0; 9} is the “excess over the boundary.”
The mean time between false alarms T is given by L(6)) while the delay for
detection is given by L(6).

Detecting a change from a negative trend E{g(x) | 6p} < 0 to a positive
trend E{g(x) | 6;} > 0 (upward change) can result in effective bounds for L(6).
Notice that Q(6p) 2 1-a and Q(6) < f5, result in consistent inequality directions
in (2-15). Thus, upper bounds can be evaluated in the case of disorder
detection. Similarly, bounds for L(6) in the case of detecting a change from a
positive trend to a negative one (downward change) can be found by

reversing the inequalities in (2-15).
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4. The Operational Characteristic OC and ARL Functions for One-sided
SPRT Tests

For detecting a change from a negative to positive trend, the

probability that the one-sided test does not stop under 6y, can be found by

using the limit of the two-sided OC function, as b tends to negative infinity.

Thus, this probability is lower bounded by:
PriL(6,)=c}= li 6
{ ( o) } b_ﬂ‘wQ( O)
> lim exp{h(6p)-a}-1
b—>—ec exp{h(6p)- a} - 11(6p)exp{(6p)- b}

_ exp{h(6p)-a}-1
exp{h(@o)-a} )

Notice that the obtained lower bound avoids the use of the functions &(8) and

n(6) which are difficult to generalize.
The probability that the one-sided test terminates under 6y which is
the size (a) of the one-sided test is upper bounded by
a=Pr{Sy 2aHy}  =Pr{L(6p) < =}
= 1-Pr{L(8)) = =} (2-16)
< exp{-h(6y)-a}.
This result is very important and will be used in the sequel when analyzing
the cumsum procedures due to Lorden’s criteria.
An upper bound for the ARL function of the one-sided test under 6;

(Delay for detection) is obtained by using the upper bound for the ARL of the
two-sided test (2-15):
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L(6))= Ey{N} € tim L2 7O1-Q(60)+b0(6:)
b

Do E{g(x)|6:}

Since b — ~eo, the OC function Q(6;) is a decreasing function (monotonicity
property of the SPRT function), E{g(x) l61) > 0 (detecting a positive trend),
hence, the right-hand side is a decreasing function and the inequality is

preserved as Q(6 1) — 0, resulting in:

L(61) = Ei{N}=E{N|6y} < 246 E{g(x)61}>0. (2-17)

E{g(x)6:}

5. SPRT ror Composite Hypotheses

Although the SPRT was derived from a test of a simple hypothesis
against a simple hypothesis, it was shown that from the on-line point of view
of detecting abrupt changes, optimal stopping rules do exist in the case of i.i.d.
observations with known distributions before and after the change. When
the distribution after the change is not known, some other hypotheses can be
considered. Thus, it is natural to consider to test for example Hop: 68 < 6*
against Hq: 6> 6.

Wald (Wald, 1947) considered the method of weight functions in
order to deal with unknown composite alternatives where the alternative
may be a parameter within a surface (Rejection Region). If the method of
weight function is not feasible, so-called open-ended (one-sided) likelihood
ratio test procedures can be considered. Lorden (Lorden, 1971) investigated
that approach for the problem of open ended (one-sided) tests for the one
parameter exponential Darmois-Koopman families of distributions. This

approach leads to easily computed procedures to obtain approximations to the
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detection probability and ARL functions of the SPRT of composite hypotheses
using only the theory developed for simple hypotheses. The following shows
that this is generally possible in the context of a one parameter exponential

family, and will form the base for Lorden’s cumsum procedure.

a. Composite Testing for Darmois-Koopman Distribution Families
(Siegmund, 1985)
Consider a general SPRT test defined by (2-2) and (2-3) with the

additional assumption that xj, xp, ... arei.i.d., so that

Next we follow Siegmund’s analysis (Siegmund, 1985) to derive a new
observation. Let P, P* be third and fourth density functions, such that the
original test of Po against Py is equivalent to a test of P against P* with new

stopping boundary values, such that

P’(x) {auﬂ"‘
P(x) | Pyx)]

91 20, (2—'18)

Note that P*(x) must satisfy

Define

hence




[ e#1p(x)ax =1
Now we define a function b(6) such that

[ e®®)8p(x)dx = e®) 1 (2-19)

—00

where 0 represents the statistical “distance” between the null and the
alternative hypotheses. Notice that b(6;) = b(0) = 0. If the last integral

converges then

Jm e2(D0-bO)p(x)ix = 1

-0

and
Pg(X) - ez(x)@—b(@)P(x)
and
Po(x) _ 2(x)8-b(8) _
P = ° (2-20)

Po(x) _| PAi(x)

P(x) | PRyx)
one-parameter exponential family of distributions under which composite

0
represents the new test since ] . The resulting test defines a

tests can be evaluated easiiy.
Differentiation of (2-19) w.r.t 6 gives:
b'(6)= J_mz(x)- Pg(x)dx = E, {z(x)}
and

b"(6) = J:o[z(x)]z Py(x)dx - [")’(9)]2 = var, (z(x)) 2 0 (2-21)

so b(6) is convex. The desired 64# 0 satisfying (2-18) exists if and only if
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b’(0) = j: z(x)P(x)dx = E,{z(x)} = 0

since b(0) is convex and b(6;) = b(0) = 0 (see Figure 2.2).

The original test of Py against P1

N = inf{n: ﬁ Rix) 3 (a,b)} (2-22)

k=1 PO(xk

o

is equivalent to a test of

p

= inf{m: - .(xk)eal b
N nf{. EP(xk) (a®,b )}

G, K6) K6)
N \ A
6, ; :91" 6 V 1
b"(0) < 0 b(0) = 0 () > 0

Figure 2.2. The b(6) Function (from Siegmund, 1985)

Since P(x) represents the null hypothesis under (2-18), it is clear that
for composite testing, b’(0) = E{z(x; )} = E{z(x)]Ho} # 0 implies that under the
null hypothesis (no disorder) the test should give a negative trend b’(0) < 0

when detecting a change from a negative to positive trend (see Figure 2.2).

This result is consistent with another one which is presented in the sequel,




namely, that it is worthwhile to bias the detector if it is known that before the
disorder occurs, the test will have zero mean. This gives some degree of

robustness to the test under composite hypothesis testing.

b. Performance Evaluation
The following proposition establishes an important result about
the performance of the SPRT within the composite framework. This result
will be shown to play a key role in Lorden’s work about the optimality of
Page’s test in the on-line framework (minimum average delay for detection),

by assigning a lower bound on the ARL for competitors of Page's test.

Proposition (Wald, 1947):
Given a two-sided sequential test of Hy:Xe 6p against Hi:Xe 6,

suppose N; and N are stopping times for x1, x2, ... € X such that:

Pgy(N1<e)<a<1 and Pyg(Nz <e)<f<1

where o and f are the false alarm and miss probabilities (respectively).

) fo¥) |L_ = 10l fo¥) 3
1(8,6) Eo{log{feﬂ (x)}} J_mlog[foo (x)}dpg (2-23)

this is the information number or the Kullback-Liebler number. Then:

Define:

. 1(9,00)-E9{min(N1 Nz)} >2(1-f)lna" ! -1In2

e and for Ny — +oo(one - sided test) and S 0, (2-24)

Ing™!

1(6,60)

L(6)= Eg{Ny} >

The proof can be found in Wald’s book (Wald, 1947, p. 197)

47




Remark: The last proposition gives a lower bound on the average delay for
detection D = E{N [ H;} for any stopping rule for which a = Po(N<=) < 1 (see
Figure 2.3). For the SPRT we have the approximate relations (2-13) between
the ARL and the error probabilities. The last proposition generalizes (2-17) for

composite tests, in asserting that the ARL function in (2-13) is approximately

minimal.
S" '}
H1:6
a e
i
1
§ | Ny N,
O ! T > n
1
\\\\_\\\j
b <
H0:90

Figure 2.3. Sequential Test Exit Times

c. Performance of Sequential Composite Tests in the Presence of a

Weak Signal
In classical detection theory, the locally optimum detector
maximizes the slope of the power curve with respect to signal strength
(evaluated at zero signal strength or at the presence of a weak signal) for a
fixed false alarm (Neyman-Pearson locally optimum procedure). In this

composite alternative hypotheses approach, the alternatives 6 are close in the
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sense of metric or distance to the null hypothesis 8y. It can be shown
(Kassam, 1987) (Poor, 1988) (Kazakos, 1977) that the locally optimum detector
in the classical detection problem of Hg: x; ~ P(x | 6g) versus Hq: x; ~ P1(x) =

P(x| 6) for 6> 6 is given by:

d
8eo(x) = _Eép(xlo)lo—’o" __R'(x)
P(x|6p) Py(x)
-~ In{P(x6)}]o-s, 2-2)

where 6 - 6y indicates the “distance” between H; and Hyg, and 6 — 6; indicates
a weak signal situation, resulting in the locally most powerful (LMP)
nonlinearity g4. For the ST defined by (2-2) we can define the Signal-to-Noise
Ratio (SNR) (Kassam, 1988):

(E{sl6})’
SNRém.

We seek to maximize the SNR when 6 — 6.
The efficacy € of a test is defined (Kassam, 1988) as the limiting

incremental signal to noise ratio:

£(g)= lim (E%E{S"’O}’ =69 )2

g:g; n- Var{SnIGO}

_ (E{S'(X)leo})z
var{g(x)l()o} '
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The nonlinearity g(x) that maximizes the efficacy is the local optimum
nonlinearity gs,(x) = —P,’(x)/ Py(x) which is also the Neyman-Pearson locally
optimum procedure. In this case the efficacy is equal to Fisher’s information
for a location shift test, namely: Hy: x; ~ f(x) versu: . 71: xj ~ f(x-6), and is given

by (Kassam, 195/ :

o, 2
(3)= | [ = (‘;‘)’} Po(x)ix.

6. Practical Criticism of the SPRT and Truncated Tests

The optimality property of the SPRT is a remarkably strong property
but it applies only to simple hypotheses. Even for the simple case of constant
signal detectors as shown in (Poor, 1988), it is necessary to know the signal
value in order to implement the test. This is in contrast to the Fixed Sample
Size tests which are UMP for 6 > 0. For applications involving composite
testing, the open continuziion region can lead to very large sample sizes,
especially when E{log[f;(x)/fo(x)}} = 0. Thus, although the ARL of the SPRT is
finite witi\ probability 1, it is not bounded. This difficulty zan be overcome by
modifying the SPRT to stop sampling and make a hard (single-tnreshold)
decision after the ARL has reached some maximum number of samples. This
type of test is known as the truncated test and can be described as follows: The

sequential test is defined by

N =inf{n: S, e (a,b)}.

In the absence of a definite upper bound on N, we define an upper bound M.

Hence, the new (truncated) stopping rule is given by

min(N,M).
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Another problem associated with the SPRT is the estimation
following detection. If we want to stop sampling as soon as it is possible to
tell in which of two subsets of the parameter spac: a parameter lies, then
usually, the estimation procedure will require an adequate number of
samples which is larger than the sample size. A possible solution is to
artificially enforce a larger sample size. However, sequentially stopped
versions of the estimators are biased, while we would like to consider
unbiased estimators. The problem of estimation following sequential tests is
not a part of this work. However, in the disorder detection framework, we
are interested in randomly stopped averages Zzlg(x,-) where m is a random
variable. The Anscombe-Doeblin theorem (Siegmund, 1385) shows that such

averages are asymptotically normal under quite gereral conditions.

E. CUMSUM PROCEDURES
Assuming that a given process has i.i.d. observations x1, x, ..., whose
distribution possibly changes from P, to P; at an unknown point in time v,

then, in the hypothesis testing framework the problem can be presented as:

Ho. X1,X2,... ~P0
versus
. (2-26)
HVZ X1,X2,..,Xy1 ~PO val
Xy, Xys1s--- "‘P]

Let P, and E, denote the probability measure and the expectation under P,
respectively, when the change from Py to P; occurs at the vth <ample
(v=1,2,...). Let Pgdenoie the probability that there is no change, i.e., V' = oo.

Using Lorden’s definition (Lorden, 1971):
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D=E{N}= Supesssup EV{(N - v+1)T|xy,xa, ,xv_l}

where: (a)* = max(0,a) (2~-27a)

which is the worst possible or the least favorable conditional, expected
detection delay or quickness of reaction to a change (disorder). Thus, a
"minimax" type of criterion is defined for which the delay D is the smallest

value such that for every v 21
EV{(N - v+1)+|x1,x2,...,xv_1} <E{N}

almost surely under Fp.
The goal is to find the stopping time N which allows the quickest

detection of the change, subject to:

Ep{N} 2 y. (2-27b)

The constraint implies that if the change does not occur, then the expected
time for false alarm is no less than the threshold of y (where y—
asymptotically).

Several ad hoc proposals to solve this multiple hypothesis problem that
at Jeast one of the Hy hold (1 £ v <nj against Hp. The most well known
procedures are the Page-Hinkley and Shiryayev-Roberts tests, and will be
presented in the sequel. Both are based on the probability ratio, hence,

presuming the properties presented in the last section.

1. The Page Cumsum Test (Page, 1954)
Page's procedure has two equivalent implementations: Recursive

test which can be considered as a repeated modified one-sided SPRT test with
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constant stopping limits, and a Repeated SPRT with a moving indifference

zone.
a. Repeated SPRT with Moving Indifference Zone
Consic.er the test:
= 5:-5)=5,- min §
&n OSkSn( " 5)= 5 Oksn
2 _ N0 h(xi)
where Sp =) log——= (2-28)
" Z{ Po(x;)
So=0

The indifference interval equals to (0,4). The stopping rule based upon (2-28)
is defined as

N*= inf{n: S, - min 5 2 a} (2-29)

0<k<n

Note that g, =S5, - rr}(in S measures the current height of the random walk
0<k<n

gk, k =0,1, 2, .. above its minimum value. Whenever the random walk

establishes a new minimum, the process forgets its past and starts again in the

sense of a renewal process (see Figure 2.4):

S

-5, -min(5,,, -§) (2-30)

min S, =S5
Osksj

"1 Osksnej

n+j

This renewal property has important consequences. It means that

N* can be defined in terms of a sequence of one-sided SPRTs as follows:
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N; = inf{n: S, ¢ (O,a)}

if Sy, 24, then: N*=Nj.
otherwise: §N1 = min 5; and define:
0<k<N;
Ny = inf{n: §N1+,, —SN1 € (O,a)} (2-31)
if Sn,4n, —Sn, 24, then: N*=N;+N,
otherwise: S = min§
N1+Nz OSkSN1+ 2
and in general,
Nk = in'f{n: §N1¢...¢N._‘¢n - §N“..‘+Nk_1 € (O’a)}
[
a+ — — — Detection
oo - .
a I
———4 A %‘P—‘vw—'z
NY T2
a
N, N> N3

Figure 2.4. Page Test (Moving Indifference Zone)




The overall stopping time is given by:

N*=N1+N2+...+NMm (2-32)

and is called the extended stopping time, since it consists of sum of single

SPRT stopping times, where:
M= inf{m: §N1+...+Nm - §N1+...+Nm_1 2 a} (2'— 33)

is the number of the repetitions (renewals). By (2-33), M is geometrically
distributed (see also (Siegmund, 1985)) with:
E{M}=1/Pr{Sy, 24l
M
Define: N*= N;,and using Wald's identity (2 - 7) we obtain

i=1

E{N
E{N*}=E{N1}-E{M}=———.{——1—}— (2-34)
Pr{SNl 2 a}
which expresses the extended stopping time in terms of the expected stopping

size and error probability of a single SPRT.

b. Recursive Implementation

As will be shown, the recursive impleiientation has two
interpretations.

The first is the relation to the repeated one-sided Wald sequential
test with boundaries 0 and a, which forms a renewal process whenever the
random walk S, hits the lower boundary 0 (see Figure 2.5). The renewal
process is repeated until such time that a Wald test exceeds the threshold a.

Thus, the process S, can be described as

Ut
wn




So=s (3-35)
while the extended stopping time is given by:
N*= inf{n:g,, 2 a}
This representation is equivalent to the original Wald test
stopping rule:
N =inf{n:S, <0 or S, > a}
which is repeated from the initial score Sgp each time S, < 0 (zero being the

renewal boundary, hence, the name: repeated one-sided Wald Test), and so

on, until such time that a Wald test exceeds the threshold a.

g 4

Figure 2.5. Recursive Implementation of Page’s Test

The second interpretation of the recursive algorithm is related to
the connection of the one-sided first passage problem with a single server

queue. It will be shown that a queueing process wy can be described in terms
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of a random walk S,. This fact forms the basis of the asymptotic distribution
analysis of wy as n—ee.

Assume the customers arrive at single server at time a1 < a3 + a3
< a1 + a4y +a3. These arrival times are the arrival epochs which form a
renewal process. Assume, a1, @2, ... are i.i.d. and let b, (n = 1, 2, ...) denote the
service time and w, the waiting time of the nth customer. Suppose that the
(n-1)th customer arrives at epoch t. His service time starts at epoch t+ wy_1
and terminates at t + wy_1 +by—1 (See Figure 2.6). The next customer arrives at
time t+a,. He finds the server free if wy.1 +by_1 < @y, but has a waiting time
(server busy) wy = wy_1 +by_1 - an if this quantity is greater or equal to 0.
Denote the queueing process by x, = by_1 —ay. In short:

wn-1+xn ifwp-1+xp 20

Wy =
0 if wp-1+xn <0

or: wy =max {0, wp-1+xn}
wo=0

This result shows that if the service times b1, by, ... are i.i.d., then the x,'s are
also i.i.d., hence the process wy is a random walk which resets to 0 whenever
it enters (—,0). In order to describe the random walk w, in terms of the

random walk generated by the random variables x;, define:

Sp=x1+X2+ ...+ Xy

and adhere to the notation for ladder variables. Define v as the subscript for

which §120, 52,20, ..., Sy-1 20, but S, < 0. By definition, v is the first
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n-1 custnm T
customer ome
y ., l ,
t+ W gt bn 1

t

t+W
fe———— Wnl
n-1 i
t=2" g l
1=1

service ends for

starts for customer n—1
customer n-1 starts for
customer n
(a)
n-1 n
customer customer
a n oo
—>» Free j€«—
time
\ —
t t +W, 1‘+W"_1+b"_1
L‘— W, l(— b

A

start service start
service ends service

Figure 2.6. Two Situations of Server
(a) server busy
(b) server free
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descending ladder epoch denoted by 7;. Up to this epoch, the customers
1,2, ..., v-1 had positive waiting times wy = sy, w2 =53, ..., Wy-1 =sy-1. The v
customer is the first one to find the server free. The first conclusion is (Feller,
1971): The descending ladder epochs correspond to the customers who find
the server free, (i.e. wy = 0) and constitute a renewal process with recurrence
times distributed as 7;. (Since the continuation of the random walk beyond
epoch ?; is a probabilistic replica of the entire random walk).

Suppose now that customer v-1 arrived at epoch 7. His waiting
time was wy_1 = Sy-1, the epoch of his departure is 7 + w,_1 + by-1 (see Figure
2.6). The customer v arrived at epoch 7 +a,, when the server is free. Thus,

the time for which the server is free is given by

free time = T+ ay - (T + wy-1 + by-1) = ay -wy_1 - by
==Xy —Wy-1 =-Xy~Sy1=-5y.

But by definition Sy is the first descending ladder height 3.
Thus, as the second conclusion we have: The duration of free periods are
i.i.d. random wvariables which constitute a renewal process with recurrence
time distributed as -3{.

To summarize, customer number k which arrives at epoch
Fpto.+ y;., is the customer that finds the server free. At the epoch of his
arrival the server has been free for -7 time units, at the same time the kt*
descending ladder height is given by Sk = —2;9{ e

The remarkable statistical property of the random walk as of
containing two imbedded renewal process: the ladder epochs and ladder

heights, and the fact that the random walk is a probabilistic replica of the
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entire random walk after the first ladder epoch (and each other ladder epoch)
enables important results to be found about the distribution of the ladder
variables in terms of the first ladder variables. It is easy to follow the next

analysis of Page's cumsum tests (2-29) and (2-35) in terms of ladder variables.

c. Page Procedure Revisited

The first Page's version presented by (2-28) and (2-29), implies that
the time k for which orsr}(i;\nsk gets its minima, is a descending ladder epoch.
Hence, at that time k the test is renewed. The descending ladder epochs
indicate the time where the change is more likely to happen. A change is
declared when the test is terminated, i.e., the "distance" from the last
descending epoch is at least a. For the repeated one-sided Wald's SPRT
version (2-35), the descending ladder epochs are defined at the times where
the random walk hits the lower boundary 0 (see Figure 2.7). At that ladder
epochs the test is renewed. Once again, the test measures the "distance"
between the current value of the random walk from the last ladder epoch.
This distance is equivalent to the "statistical distance” between Py and P, as
defined by (2-26) or the disorder distance. Notice that this analysis was done
for detecting upward changes. Similarly, for detecting downward changes we
will use ascending ladder epochs and the test terminates when the test
reaches a “distance” a below the last ascending ladder variable.

Three important observations can be made: The first, as pointed
out before in the analysis of Page's test in a composite hypothesis testing. is
that it is worthwhile to bias the detector if it is known that before the disorder

occurs, the test will have zero mean. It can be shown from Figure 2.8 that a

random walk with negative drift will improve the chance of rapid disorder
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detection under the restriction of low false alarm rate, since the number of
ladder epochs will be larger, resulting in more renewals, thus having the
effect of "forgetting” the irrelevant past observations. This result is supported
analytically in the sequel when it is shown that the expected delay for

detection is reduced by biasing the test.

—>.’1{1—<——>.’}{2.<—- —»}{r-n—

Figure 2.7. Random Walks w, and S, Containing

two Renewal Processes: 7;, 7
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- 80 l—

Figure 2.8. The Relationship between the Recursive Implementation W,, and
the Random Walk Process S, (From Feller, 1971)
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The second observation is related to the first by realizing that each
time the test is renewed (having the effect of resetting the test, hence
"forgetting” the past), the test or detector behaves like an adaptive detector,
since when reaching the descending ladder epoch, the past noisy observations
containing no data about a possible change can be ignored. The fact that at
each ladder point the likelihood of a change is the greatest implies that since
the disorder is a local phenomena, the detection will occur if the signal-to-
noise ratio and/or disorder duration is large enough, resulting in a threshold
passage. Thus, this adaptive detector acts like a low-pass filter which filters
the incoming signal except the changes.

The third observation leads to the analytical equivalency between
the Page tests (2-27,2-29) and (2-35) and is found in Siegmund (Siegmund,
1985).

Let S, = xy+...+x,,. By backward recursion,
— — + -
wy, = max(0, wy,_1+x,)=max(0, (wy_»+X,_1) +x,
=max(0, wy_2+X, 1+%Xy, X)
+
= max(O, (Wpoa +Xp_2) +Xpo1 +Xp, x,,) (2-36)
=max(0, Wy_3+Xp_2+Xp_1+Xn, Xp_1+Xn, Xp)

=..max(0, S;, Sp—S1, Sp=S3,.., Sy~Sn_1)

= max(S,-5.}=S5,—- max S
OSksn( n = 5k) = Sn o<ken ¥

which shows the equivalent interpretation of the two procedures. Namely,
the queueing variable w, measures the departure of the process S, from its

last maxima.
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This shows also that the distribution of w, and its asymptotic
behavior can be studied.
Theorem (Feller, 1971): The distribution of the queueing variable w, is

identical to the distribution of the random variable M,,, where:

M, =0r§\&>:[0,51,...,5,,]

where: S, = Zx,-. (2-37)

i=1

Hence,
Pr{w, 2a}=Pr{N*(a'<n}
where N*(a) =inf{n: S, 2 a} (2-38)

and lim Pr{w, > a} = Pr{ N*(a) < =}

a—yoo

This relation is used in the sequel to derive an expression for the probability
of the ARL function of the test (see 2-52).

The Wiener-Hopf integral equation (Feller, 1971) can be used to
find an explicit solution to the probability distributicn m(x; = Pr{M, <x} =

Pr{wy, < x}.

d. The Page Test as a Sequential Maximum Likelthood Detector
Let the problem be specified as in (2-26) When Page's test is
implemented with the log-likelihood ratio (repeated SPRT Test), it is
equivalent to a sequential implementation of the maximum likelihood

detector. The log-likelihood function I(xy, ..., x,) is given by:

P



=1 =v
= ié 108[';1)_2":‘;'] + iglog[}) AXi )]

Notice that the last te-n does not depend on the disorder time v
and can be neglecte: .
n
Py (xi)
Define: Sy = Zlog——’—
VS T Rix)
and replacing the unknown jump time v by its maximum likelihood

estimate under H,, we get the following ~hange detector:

?)=maxS" S"— min S
Sn() oV 1 1<k<n )

=S, - min S (2-39)

1<k<n

resulting in the same detection test as in (2-28,2-36).

2. Optimal rroperties of the Page Test
In this secticn we will review two important resul , due to Lorden
(Lorden, 1971). The first resul’ (the following theorem) will enable the use of
Wald approximations (2-.16,2-17) tc find an efficient way of calculating the
perform-nce measure for Page’s test. The second result establishes the

asymptotic optimality of Page’s test in the sense of Lorden’s criterion.

u. Bounds on the Performance of Quickest Detection for Repeated

01 -sida2d Tests

Let N »e the stopping variable ot a une-sided Wald test:




N =inf{n: Sy >a}
for some statistics {Sy) defined as functions of the i.i.d. observations x1, x2, -
Let N be the stopping variable of the same test applied to xi, xk+1, --., for k=1,
2, ..., and define

N*= xilzi]n{Nk +k-1}

N* is the extended stopping variable of the one-sided test which stops when
one of the sequence of tests {Ny} applied to x, xk+1, ..., stops the first time.
Theorem (Lorden, 1971): Let N be a one-sided stopping variable with respect

to xi, X2, ..., such that
Pr{N < e{Hp} < .
Let Ni denote the one-sided stopping variable obtained by applying N to xk,

Xk+1, --., and define

N *= min{N, +k -1}.

k21

Then,
1
EO{N”}Zgzy (2 - 40)
and for any alternative distribution Py,
E{N}<E{N} .

Notice that the one-sided Wald test is applied to x, Xk+1, ..., stopping the first
time one of these tests stops. This result can now be viewed by using the

renewal argument: Each time the test statistic S, (2-35) falls below zero, S, is
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reset to zero indicating that a new test is starting from k+1 and so on until the
first test reaches the stopping boundary.

This theorem establishes the optimality of Page’s test (N*) versus
unrepeated one-sided tests (N). This result will be used in the next section to

derive a performance measure for Page’s test.

b. Asymptotic Optimality of Page’s Test
Recall Lorden’s criterion definition for the performance of

cumsum procedures. The stopping rules N must satisfy

E(N|v=w}=EyN}2 1

The quickness for which the stopping rule detects a true change in
distribution is evaluated by E1{N} given by (2-27a).

The problem of minimizing E;{N} subject to the constraint
Eo{N} 2 ¥ becomes more interesting if we replace the distribution Py by the
Darmois-Koopman family of distributions {Pg, 6 €} with 68 unknown, and try
to achieve small E,{N} (defined as E,{N}) for each 8 subject to Eg{N} 2 7. To
handle composite {Pg}, cne-sided sequential tests of Pg vs. {Pg} are applied to
Xk, Xk+1, ..., for k=1, 2, ..., stopping the first time one of these tests stops.

Lorden showed that we can simultaneously minimize E,{N} for
each 6 asymptotically as y — o for a wide class of tests. Lorden’s main result
was that Page’s test (N*) implemented with the log-likeiihood function and a
zero score with a stopping boundary y belongs to this class. The following
result will show that Page test achieves the lowest possible E;{ N*}, resulting
as an optimal test both when P is known, and when P; is unknown

(composite testing case).




Let N and N* be defined as in the last section. If N is the stopping
variable of a one-sided SPRT of Py vs. P1 with likelihood-ratio boundary 1/¢,

then by using Wald’s approximation (2-7) we have that
E{N}~|logal|/I(6,,6,) as & — 0

where 1(6y, 6) is the information number as defined by (2-23). Applying the

last theorem, we obtain that N* (Page’s procedure) satisfying Eo{N*} 2 ar'! and

E1{N) is asymptotically at most [loga|/1(6,,6,) as o — 0, and this is

asymptotically the best we can do. In other words:

infE]{N}zfl{N"}~I(lggg) as y=a ' — oo (2-41)
1-Y

Lorden also showed that we can simultaneously minimize E,{N} for each 6

asymptotically as y — o for a wide class of tests:

log ¥
1(6,6,)

Eg{N*} ~ as y — oo,

Moustakides (Moustakides, 1986), extended these results to the non-

asymptotic case where yis finite.

F. PERFORMANCE ANALYSIS OF THE PAGE TEST

In 1954, Page (Page, 1954) introduced a control chart procedure based on
the repeated one-sided Wald-SPRT test with boundaries (0,2), zero being the
renewal boundary and a the stopping boundary.

Let tr.e problem formulation be according to (2-26), that is,
N = inf{n: S, > a}

and let L(s,6) be the ARL of this test with initial score 50 = s when {x;} are i.i.d.
F(x| 6) distributed, ie.,
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L(s,6) = E{ N*

So=s, 9}.
Consider now Wald'’s test

N =inf{n: S, <0 or S >a).
Similarly, let Ly(s,6) dernote the ARL of Wald's test,

Ly(s,6) = E(N|Sg = 5,6)
and let Qy(s,6) be the Operating Characteristic (OC) of the same Wald test, that
is
Qu(s,0) = P(Sn < 0] So=5,6).

Then, the ARL of Page test L(s,0) is given (Page, 1954)

L(S, 9) _ Qw(s' 9)

"1-_Qw(_o,—e_)1’”(0’6)+l"’”(s’9)' (2-42)

Lorden (Lorden, 1971) and Benveniste (Benveniste, Ed., 1986) showed that
the least favorav'> delay for detection, D, as defined by Lorden for Page’s test
occurs when the test statistic is zero when the change or the disorder occurs,
ie, Sy-1 =0, since the test statistic has the longest path to travel towards the
stopping boundary. Thus, the ARL function with initial score 5, =0,
determines both the false alarm rate T and the delay for detection D as given

by
Lo(0,6y)

T = L(O,OO) = EO(N*)= T_—Q—(Og(; (2—43)
\ 0,6
D.—L(o,91)=E1(N*)=1—_lg (01()9)' (2-44)

Possible ideal and real ARL functions are presented in Figure 2.9.
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(b) Real and Ideal ARL Functions for Testing 0 = 6 against 6 26

Figure 2.9. Possible Ideal and Real ARL Functions

Remark: The local properties of cumsum tests can be measurad in terms of
the derivative of the function L(8) at 6y, since the local properties of a test

measures the test's performance as 61— 6 (when the statistical "distance”
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between the two hypotheses tends to zero), meaning weak signals or a low
signal to noise ratio case.

It was shown (Nikiforov, 1986) that convenient measures can be defined
by using the derivative £ of the ARL function for determining a local

approximation (see Figure 2.8), where £ is defined as

= %—(:— if&=0
0= 90
and if & = 0, the local approximation is given by (2-45)
3%L(6) .
if&=0.
26° °
0= 90

This forms the basis for what is called in the sequel the local approach for

cumsum tests, resulting in local sequential tests.

1. The Lorden Approximations
As shown in the last section and given by (2-40), Lorden established
bounds on the delay for detection and tho false alarm rate for Page's curmsum
test in terms of the Wald sequential test.
Lorden’s theorem (2-40) can be applied to Page’s test with nonlinearity
¢(x) and a zero score to obtain a new bound. Using Wald's lower bound (2-16)

as derived for his one-sided sequential test we obtain
a < exp{~h(6p)}

Thus, from (2-40), the mean time between false alarm can be lower bounded
by
T = Eo{N*} 2 explh(6p)-a}, (2-46)
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where h(6p) is the unique non-zero root of the moment generating function
(2-11). Using (2-17) and applying Lorden’s theorem, the delay for detection
can be upper bounded by:

0
D = E1{N*] < E%(%Tgﬁ (2-47)

Equations (2-46) and (2-47) are known as Lorden's bounds.
Remark: Notice that the mean time between false alarms (2-46) is an

exponential function of the stopping bound a.

2. Wald Approximations
Similar results can be obtained by using the approach proposed by
Nikiforov (Nikiforov, 1986). Recall the approximation (2-14) and (2-15)
obtained for the OC and ARL functions for the two-sided Wald sequential
test. These approximations can be used with the modification bT0 (zero
renewal boundary for Page's test). Once again, a lower bound for T and an

upper bound for D will be derived.

a. Lower Bound for T when E{g(x) | 6g) < 0:
Using Page's result (2-43) and the bound (2-15) yields:
T =L(0, 60) = lim—l;"’-—g—o—'-ei)—
bto 1— Q(O, 90)

2 im-——————1 ~————Q(9°)
= leo E{g(x)leo}{a+ 7(8) +b 1-Q(90)}

Notice that the right hand side is a decreasing function of Q(8p) (since
d/dQ(Q/(1-Q)) > 0 and b < 0). Hence, using the upper bound for Q obtained
for h(6y) > 0 given by (2-14), we obtain:
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T2 hm———l-——[a +¥(6,)+b-

.To E{g(x)|90}

6(90)exp{h(90)a} - 1}
1-exp{h(8, )b}

The last term is a function of b, but both the numerator and denominator
approaches zero when bT0. Using L'Hopital's rule and using the fact that
& 6y) > 1 we obtain (Broder, 1990):

(2-48)

T2 ——1-—}{a+ 7(6o) +

1-exp{h(6, )a}}
E{S (x )| 6,

h(6o)

where h(6g) and K 6y) were defined in (2-11) and (2-15) respectively.

b. Lower Bound for T when E{g(x)|6p} =0

In a similar way we obtain (Broder, 1990):

1 a1-Q(6)]+*Q(6y)
SOy Py

= — (2—49)

Remark: By (2-49) the mean time between false alarms is a quadratic function
of the stopping bound a. Recall that by (2-46) it was shown that when
E{g(x) | &)} < 0, the mean time between false alarms is an exponential function
of the stopping bound. Hence, once again it is demonstrated that it is

worthwhile to bias the test to have a negative drift before the change,
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resulting T as an exponential function of the stopping bound instead of a

quadratic one (Broder, 1990).

c¢. Upper Bound for D
Consider now the delay for detection. Since that for detecting
upward change, after the disorder E {g(x)| 61) > 0 results in h(6;) < 0. Using (2-

44), (2-14) and (2-15) in the same manner as before we obtain:

D=L(0,6,)
__L,(0,6)
1-Q(0,6,)
i [a+7(6,)][1-Q(6,)]+bQ(6,)
- p101-0(6)) E{g(x)6:}

Once again, since the right hand side is a decreasing function of Q(6;), and
since b < 0 the inequality is preserved. Thus, as Q(61)0, we can replace Q(6;)

with zero and obtain

a+ A6y
D< W (2-50)

which is consistent with Lorden's bound (2-47).

3. Asymptotic Performance and Measures
For all disorder detection schemes the pair (T,D) determines the
detector performance, just as Pp versus Pra (Pp being the probability of
detection and Pfra is the probability of false alarm) determines the

performance of a classical detector.
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As shown, the ARL function determines uniquely the pair (T,D).
Thus, it is in our interest to examine its asymptotic performance. Hinkley
(Hinkley, 1972) used an asymptotic performance measure for the nonlinearity
g(x) while using Pp and Pr4 as performance criteria. This measure was
derived while calculating the efficiency of the cumsum procedure. The

proposed measure was
logE{exp{-h(6p)-g(x)} | 61}.

Recently (Broder, 1990), another performance measure was proposed
resulting in an alternative technique which allows recursive computation of
the ARL, the stopping bound a increases, avoiding the complicated
numerical integration needed to generate the performance curves (solution

of Fredholm type integral equations).

a. Asymptotic Approximation of the ARL Function
Central limit theorem for renewal processes. (Ross, 1989): For large ¢, N(t)
being a renewal process is approximately normally distributed with mean ﬁ
and variance to2/u?, where u (u # 0) and o are respectively the mean and the

variance of the interarrival distribution.
N —
lim P{—-Lt/—li < x} = P(x) (2-51)

where @(x) is the Gaussian cumulative distribution function:

X

2
d(x) = L J'e"‘ 24y,




Khan (Khan, 1981) used this result to show the asymptotic
normality (in the sense of a—e) of the run length of Page’s test with a

stopping boundary a under P(6,):

define: p=E{g(x)8,} ©o*=var[g(x)6]
: L(e‘)—% P,
then: \Eol ™ »N(0,1)

where N(0,1) is a Gaussian distribution with zero mean and a unit variance.
Using this asymptotic distribution and the results derived in (2-38), a new
approximation can be established for the asymptotic probability that the

average delay is less than a given threshold:

Pr{L(6;) < x} = d{%]. (2-52)

b. Alternative Asymptotic Performance Evaluation
An alternative way to evaluate the Page test under different
nonlinearities for various noise distribations has been shown by Broder
(Broder, 1990). Define an asymptotic performance measure

A lim  \08ARL(6)
ARLp—ee ARL(OI)

_ lim 08(T) (2-53)
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Notice that for n to reach a finite bound, both T and D approach infinity as
a — oo, thus 7 reflects the asymptotic performance and is the reciprocal of the
slope of the (D, logT) performance curve. This performance measure can be
interpreted in two ways: First, as the ratio of the run-length for the two
hypotheses. Hence, the larger n indicates better asymptotic performance;
second, as an Asymptotic Relative Efficiency (ARE) between the two tests.

Recall that for a fixed mean time between false alarms (large enough):

log(Ty)
ARE];!:ﬁ_:]im_Bl_.:_D_Z_—_.L_Z_(ﬁ). (2-54)
() 112:‘_’: log(T,) D, Li(6;)
D,

hence, resulting in the delay ratio of the two tests.
Using Lorden's approximations (2-46) and (2-47) for the Page test,

and ignoring the "excess over the boundaries” we get:

A%

logT 2 h{6g)a

a

DLm————
E{g(x)|6;}

hence

n 2 h(6))- E{g(x)|61} = n. (2~55)

This lower bound 7 can be defined as the asymptotic performance measure,
thus, being a convenient way to "measure” Page's test using different

nonlinearities g(x) for various noise distributions.




Notice that the lower bound 7 can be used as an alternative way
to estimate the expected delay given the desired large mean time between
false alarms.

Property: If g is the log-likelihood ratio, g(x) = log[(f(x| 6 1)/f(x | 6¢)], then
under any noise distribution the bound is tight, ie., n=1n= 1(64,6p) where

1(61,6y) is the Kullback-Liebler information number (2-23).

{exp{log }[90} j w; illzo f(x|6, )dx

using the moment generating function identity (2-11) it becomes obvious that

Proof: Since

h(6p) = 1.
Hence, n=E{g(x)6;} = n=1(6,6)
tim ~28T _ 1(6,,,)
Tow D a
Recall that by definition: T=E{N*}z2a”

where « is the Probability of false alarm. Hence

1
13%”—:1(9],90) =0
log ol
or D= -1'(9" &) a—0. (2-56)

Hence, (2-55) can be seen as a generalization of Lorden’s result (2-41) for any
nonlinearity function. The root h(6)) of the moment generating function

identity “scales” (2-41), thus (2-55) establishes a general bound which can be
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evaluated for any nonlinearity g(x) under any noise enviroament. We will
be interested in the cases where the strict equality exists (1 = 1), which enabies
us to get a precise relationship between the delay and the false alasm rate. In

the next chapter we will see sonie examples for which n = 7.

G. SUMMARY

In this chapter we show that detecting a disorder presented in the
multiple hypothesis framework (1-2) can be donz by using cumsum type
procedures. One of these procedures, called the Page test, was presented and
investigated in depth. Using renewal theory and ladder variables we present
a new technique to observe the properties of Page’s test. Three observations
are shown: first, it is worthwhile to bias the test if it is known tha* before the
disorder the mean of the statistic is zero; second, Page’s test behaves like an
adaptive detector in the sense that the ladder epochs form a local minima (or
maxima) process in which the past observations which do not contribute
relevant information about the change are forgotten. Finally, we showed the
equivalent representation of Page’s test in the off-line and on-line versions.

Page’s test implemented with the log-likelihood nonlinearity is shown to
be the MLE of the change time (within the multiple hypotheses testing (1-2)
framework). Using Lorden’s results, the asymptotic optimality of Page’s test is
obtained in the sense that Page’s test implemented with the log-likeliho °d
nonlinearity is the optimal stopping rule, that is, the average delayv for
detection subject to the false alarm rate which tends tc <crvo is m nimized.

Thus, the log-likelihood nonlinearity is shown to be the optimal




nonlinearity, and therefore, Page’s test, which is the MLE for this case, is
shown to be the quickest detector for the disorder problem.

Finally, performance evaluation of Page’s test was derived. The main
results are what is called the Lorden approximations for the mean time
between false alarms T (2-46) and delay D(2-47) and similarly, the Wald
approximations for T (2-48) and D(2-50).

In addition, using Broder’s results, the asymptotic performance measure
is shown to be lower bounded. The problem of how informative the bound is
for different nonlinearities will be analyzed in the next chapter. Here we
show that for the optimal nonlinearity the log-likelihood, the bound is tight,
i.e., the bound provides all the information needed to predict Page test
performance. Finally, a new simple generalization of Lorden’s result was

shown for any nonlinearity function in any noise environment.




ITI. THE APPLICATION OF PAGE’S TEST TO PARAMETRIC AND
NONPARAMETRIC CHANGE DETECTION

A. INTRODUCTION

In the last chapter it is shown that implementing the Page’s test with tne
log-likelihood ratio nonlinearity results in the Maximum Likelihood
Estimator (MLE) of the change time. Furthermore, it is the quickest detector
of the disorder. The problem becomes much more complicated when the
model parameters after the change are not known. In this case, the unknown
random variables, v the change time, and the model parameters 6, have to be
estimated. Thus the detection problem can be presented in the estimation
framework. Joint estimation of v and 0 is a very difficult task because the
disorder occurs at an unknown time and the presence of several unknown
parameters forces the use of suboptimal detectors. Hereby, we present some
competitive ad-hoc methods used for detection and if possible also estimation

of the change time and the model’s parameters.

1. Likelihood Oriented Methods
In situations such as detection of an unknown change magnitude of
Gaussian signals it is possible to perform the joint estimation of v and the
unknown parameters 6 (Basseville, 1988). In such cases, the detection
approach consists of replacing the unknown jump magnitude of the model
parameter by its MLE. The Generalized Likelihood Ratio (GLR) test of the

joint estimation becomes

ol




H,
max maxS*(v,8;) > A
1€v<n 6 (v.61) };0

where S'(v,6;) is the log-likelihood cumsum statistic. This double
maximization problem of estimating both the change time and the
parameters is reduced to a single maximization of the cumulative sum since
the Gaussian characteristic of the signal to be detected allows an explicit
solution as a function of 6; for the likelihood ratio test. (Basseville and

Benveniste, Eds., 1986, Chapter 1). Hence the change time estimate becomes
V(r) = argmin S,"(v, 6, )
14

This property is still valid in a more general situation when we consider the
problem of det.cting additive changes in linear models described in state-
space representation and leads to an efficient change detection algorithm with
reasonable computing cost. An earlier approach consists of monitoring the
innovations of a Kalman filter, because of the linear property of the system
and additive effect of the change on the system, it may be shown (Willsky and
Jones, 1976) that the effect on the innovation is also additive. Moreover, the
Gaussian characteristic of the state and observation noises which ensures for
an explicit solution in 6; for a likelihood ratio test, is still valid in this
situation. These points were explored by Willsky and Jones (1976) who
derived a recursive algorithm for the GLR test computed for the innovation
of a Kalman filter designed under the no change hypothesis. The distribution
of these innovations with respect to its past values, thus, the cumulative sum

to be computed in this case is in the form of
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. ] P, (Xklxk_],u-lx())
S/(Pay Pay ) = Y log =1
!( 90 91) k2=l ogpgo (xk|xk—]l"'1x0)

where Pgl reflects the change in a certain parameter (change in the mean,

variance, etc.). The GLR test is then

Hy
on . >

me (P by ) 2 4
0

As mentioned above, the maximization over 6 is explicit because of the
Gaussian assumptions of white noise and additive changes, hence the test for
the change time is reduced to a single authorization even in this more
general situation.

In the case of detecting changes in model eigenstructure such as
changes in AR or ARMA models or equivalently in the state transition
matrix of a state-space representation of a model, the problem of the joint
estimation of the change time v and the changing parameters is more
complicated. At this point we need to distinguish between two types of
situations: in the first case, if the signal or system is known to have the same
behavior as an AR or ARMA process, then the model is descriptive enough
for its parameters behavior to be detected (Basseville, 1988). The second case
reflects a situation where the signal or system is not known and the main
issue is to detect changes in the eigenstructure, then the AR or ARMA

models are nothing but a tool for detection of such changes.
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2. Simplification of GLR Tests (Two Models Approach)

In the case of segmentation of signals resulting from AR models such
as speech segmentation (Andre-Obrecht, 1988) the detection of abrupt changes
in the AR parameters is performed via the comparison between a long-term
model My identified in a growing window and a short-term model M;
identified in a sliding window of fixed length. (See Figure 3.1) This method
is shown to be a simplification of the GLR test since for implementing the
GLR, the maximization over 6 (the AR vector parameter) is no longer explicit
because the change is not additive on the observation. Moreover in the case
of ARMA models, the cumsum is no longer linear in the parameter,
therefore the test becomes quite expensive since for each possible change time
r we need to use the data {r, r+1, ..., n} for identifying the AR model M; after
the change and compute the log-likelihood ratio cumsum S:, then maximize
over r. In the case of AR models, this method is not only expensive but leads
also to boundary problems (Deshayes and Picard, 1986).

The two model approach simplifies the GLR test by using a fixed
length sliding window as opposed to varying length windows needed to
implement the GLR test. Different statistical distance measures between the
long-term and the short-level models were proposed by Appel and Brandt
(1983) and Segen and Sanderson (1980), Basseville and Benveniste (1983,
1986), Ishii and Iwata (1979) and Andre-Obrecht (1988). Most of these
measures are based upon innovation testing which in turn is based upon the

conditional distribution of the observations.
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Figure 3.1. Schemes for
a. GLR test
b. Two Model Method

3. The Statistical Local Approach
Another approach for overcoming the drawbacks of the GLR tests is
known as the “local approach” and has been introduced in change detection
problems by Nikiforov (1983, 1986) for on-line detection for AR models.
The original idea of Nikiforov consists of looking for small changes
in AR or ARMA models and using the Taylor expansion of the log-likelihood

function. His method results in a statistic function

d
g(xn) = a’glog PG(xn|xn—1~--)

6=6y
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In other words, instead of monitoring the observation process (x ,} or the
innovation process, the local approach monitors g(x). The key result (Deshays
and Picard, 1986) is that there exists a central limit theorem for g(x), for which
any change in @ is reflected in a change in the mean of g(x) for which Page’s
test or the GLR tests can be used. Nikiforov derived two algorithms based
upon cumsum tests for two different priors about the change directions.
Different applications for these algorithms are described in Nikiforov
(Nikiforov, 1986). Another use of these methods is in the area of recursive
parameter identification. Benveniste (Benveniste, 1987) has shown that for

any general recursive parameter identification algorithm
6p = 01+ YuHn(6n-1,%n),

where 7, denotes the varying gain and H, denotes the statistic, applying the
local approach to the statistics H,(6y,x,) where 6 is a reference model, enables
one to transform the problem of changes in the parameter vector 6 into the
problem of detecting a change in the mean value of an asymptotically
Gaussian distributed process which is a camsum of the function H(").

Finally, Basseville (Basseville, 1987) and Benveniste (Benveniste,
1987) introduced another use of the local approach technique. In the case of
detecting changes in the AR part of a multivariable ARMA process having
unknown and time varying MA coefficients. Because the Fisher information
matrix for an ARMA process is not block diagonal with respect to the AR and
MA parameters (because of the coupling between the unknown monitored
parameters and the unknown changing MA parameters), neither the
likelihood function nor its Taylor’s expansion (local approach) can be used.

By using instrumental statistics on the observations (Benveniste and




Basseville and Moustakides, 1987), the changes in the AR portion are reflected
in changes in the mean of the instrumental statistics. By looking for “small”
changes in the AR coefficients, the local approach statistic, i.e., Taylor’s

expansion of the instrumental statistics results in an x2 test

H,
urz,'u, 2 A
Hy
where U, is the instrumental statistic vector (which is asymptotically

Gaussian) and Z, is its covariance matrix.

B. ORGANIZATION OF THIS CHAPTER

In the introduction section, different competitive methods of Page’s test
were briefly described. Some of them enables one to detect (or estimate) the
change time together with estimation of the changed parameters. Now, we
will only be concerned with the quickest disorder (change) detection problem.
In the case of implementing the log-likelihood nonlinearity, the Page test is
the optimal (quickest detector) for the dizorder problem but assumes that the
observations are i.i.d. distributed with one distribution before the disorder
and another distribution after the disorder. However, in the case that the
i.i.d. assumptionn does not hold, other detection schemes “tuned” to the
specific problem may perforin better than the suboptimal Page test. Despite
these concerns about Page’s test, the test will be shown to detect the change
instants occurring at random times very efficiently. This chapter focuses on
general implementation of Page’s test for both parametric and non-parametric
detection, and evaluation of the test’s performance for the implemented

nonlinearities, by using the results in Chapter II.
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Section C introduces the case of detecting jumps in the mean of Gaussian
distributed observations. Both upward and downward directions are
considered as well as the case when the change magnitude is unknown.
Page’s test implemented for this problem, (derived from the on-line point of
view) and the GLR test (derived from the off-line point of view) are shown to
be the same.

In Section D, performance evaluation for Page’s test is evaluated for
different nonlinearities in Gaussian and Gauss-Gauss mixture noise
environments. In particular we are interested in the cases where the lower
asymptotic performance bound 7 is tight (i.e, 7 = 7n). In the parametric
framework, the problem of detecting changes in the mean and variance of
Gaussian observations is shown to result in = 1 for which the performance
measure is easily computed. As a second example we consider a suboptimal
implementation of Page’s test where the distribution after the disorder is not
known and by the use of composite hypothesis technique, a new test is
derived. This local optimum detector is based on Wolcin’s test (Wolcin, 1983)
and a modification (Broder, 1990), and is modified to detect energy changes
occurring within frequency “windows.” New performance results are
obtained and shown to be consistent with the simulation results. Finally, in
the nonparametric framework, the sign test is analyzed by using results from
random walk theory, and shown to have the property n = 1.

Section E summarizes the main results of this chapter.




C DETECTING JUMPS IN THE MEAN

We begin in this section with the simplest application of the Page test,
namely the problem of a change in the mean of independent identically
distributed Gaussian random variables. This problem is an important one
since, as will be shown in the sequel, many complicated problems involving
abrupt changes in the eigenstructure (parameter changes) can be converted to
the problem of change in the mean. Two cases are considered: the first, when
the means before and after the change are known, and secondly when the

means and therefore the change magnitudc is unknown.

1. Known Means before and after the Change
Let {e,} be a Gaussian white noise sequence with variance o2, and let

{x,} be the observation sequence such that
Xpn=lUp+e, n=1,2,..,N

where:

o ifn<wv-1

Hn = Uy ifn2v.

Consider now the likelihood ratio test between the “no change” hypothesis:

Ho: v>N
versus the “change” hypothesis:

Hi: v<N.

Thus, the log-likelihood ratio between these two hypotheses has the

following form (Basseville, 1988):
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e Polxe) Tl Ailx) _ ﬁ Pi(xy )

L( V) = N ) (3 _ 1)
[T;-: Polxe) v Fol(xe)
therefore, its logarithm is given by:
ﬂO Ho + iy 1
l L ’ 3 - 2
" ( 2 ( 2 ) 0,2 v (“0 ) ( )

where A = y1-py is the magnitude of the jump, and

Sij(u,A)=A-i(xk—,u—f;—).

k=i

Replacing the unknown jump time v by its maximum likelihood estimate
under H; yields:

v-1 N
vV = argmin P x Py(x ar mmSN ,
KN{}(I_%O p k:l_Ivl(k} rgmins, (o, 4)

Thus, we get the following change detector:

H,
>

gnAL(V)=maxS! (ug,4) 2 a (3-3)
v HU
where a is a threshold properly chosen as addressed in Section C.

This detector can be described also as follows: detection occurs the

first time at which

gN =57 (H.4)~ min 5 (uo,4)>a (3-4)

which is nothing but the Page-Hinkley stopping rule or cumsum algorithm,

and may be computed in the following recursive manner:
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AV
8n=(8n—1+xn-#0-5) . (3-5)

Thus, both Page’s stopping rule (derived from the on-line viewpoint) and the
generalized likelihood ratio (GLR) test (derived from the off-line viewpoint)
are identical. The behavior of the Page-Hinkley stopping rule is depicted in

Figure 3.2.

2. Unknown Magnitude of Change
In this case we may assume that po is known, but u; is not. A
minimum jump magnitude An;n to be detected is fixed a priori. Two tests are
running in parallel corresponding to two possible directions (increasing or
decreasing mean).
For detecting a decrease in the mean we determine the stopping time
N by observing when the maxima process drops down ty a, the detection

threshold (see Figure 3.2).

N = inf{n: max S; — S, }

1<k<n
n A )
where = Z( Xy — Ho + 20 j (3-6)
k=1 2
S =0.

Similarly for detecting an increase in the mean we define

N = inf{n: min §; -5, 2 a}

1<k<n
n A .
where Z(xk — pg — 20 ) (3-7)
k=1 2
5 =0
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Y

Figure 3.2. Page-Hinkley Stopping Rule as the Process of
Global Minima (for a) and Global Maxima (for b)

a. Detecting Upward Change
b. Detecting Downward Change
The change time v is estimated to be the last maximum time before
detection. Similarly, the change time v is estimated to be the last minimum
before the stopping time. Notice that this test corresponds to a linear
transformation g(x) = x as described in Chapter II with bias terms: po % k.

Figure 3.3 illustrates the recursive version of Page’s test when Amin, the
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unknown change magnitude is set to be 0.2, the change time is at 100 and the
SNR of the input signal is -3dB.

D. PERFORMANCE EVALUATION OF CUMSUM PROCEDURES

As<howninChapter II, we characterize the performance by the mean time
between false alarms T, and the mean delay for detection D. The asymptotic
ratio between log T and D was shown to be defined by (2-53) and (2-55):

n=lim lﬁ‘g{;()—“l 2 h(6o) E{(x)i61} = n (3-8)

a—300

where a is the threshold of the test. This relationship is influenced by two
factors: The first is the transformation or nonlinearity g(x). The second is the
statistical properties of the observation before the change (the root h(6p) is a
function of the SNR) and after the change (E{g(x)l 61}).

In the sequel, several nonlinearities are presented and analyzed in
different noise environments. Special attention is given to these situations

which result in equality in (3-8), namely:

Jim BT = 1(60)-Efg(x)e1]

a0
resulting in an easy way to calculate the asymptotic performance of the
detector.

Notice that for the cases where (3-8) is an equality, the relationship
(logT)/D enables a comparison of Lorden bounds (2—46), (2-47) and Wald's
bounds (2-48), (2-50) for the pair (T,D) with the correct performance measure
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Figure 3.3. Detecting a Change in the Mean of Gaussian Observations using
Page’s Test
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(3-10). Both bounds are based on the root of the moment generating function
h(6p) and the statistics after the disorder E{g(x) ! 6;}. The following subsections
present some examples for which performance curves specified by calculating
pairs of (T,D) for many values of a, the stopping boundary, and k, the bias
term. Thus, the use of the approximating equations for (T,D) enables us to

find the pair (a,k) for a given performance requirement (T,D).

1. Parametric Detection
For parametric detection schemes it is assumed that the general form
of the statistics before and after the change is known. If the parameters after
the change are not known, composite testing techniques could be used as
shown in the sequel.
To illustrate the performance curves, we consider the situations

where the noise distributions before and after the change are both Gaussian

P(x)= ——?_\/%exp(—x2 / 202)

and also the case where both densities are Gauss-Gauss mixtures (Kassam,

1987):

2 2 2 2
1 o * /20§ +e 1 o * /20

\ 27r08 27t0’12

: : 2 2
with variance 6?2 = (1-€)o + €0,

(3-9)

The Gauss-Gauss mixture density is the first two terms in
Middleton’s Class A model where the noise density function is modeled by an
infinite weighted sum of Gaussian densities with decreasing weights and

increasing variances, and has been used to model interfering waveforms
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(pulses) and narrowband noise. The parameter € indicates the amount of
contamination and is typically in the range (0,0.25). For small enough values
of g, the behavior of P(x) near the origin is dominated by that of 0'21. For large
values of IxI, o%. dominates the behavior of P(x) since its tails decay at a
slower rate than do those of o%. Thus, the relative strength of the
contamination is given by the power ratio 729012/0'8. Adjusting the
parameters (£,7) we can determine the performance of the cumsum
procedures for a wide range of distributions including those with heavy tails.
A second disorder situation results in the assumption that before the
disorder Py(x) is Gaussian while after the disorder P{(x) is a Gauss-Gauss
mixture. We consider the linear detector g(x) = x, and the nonlinear log-

likelihood detector and the local optimal energy detector g(x) = x-1.

a. Detecting Disorder in Gaussian Measurements
If g(x) is the log-likelihood nonlinearity, then it has been shown
in Chapter II that in the limiting situation the bound is tight, ie, = 7=17
where

logT

= 1(6y,60)

n= lim
T—o0

where 1(8,,6p) is the Kullback-Liebler number defined in (2-23). In the case of
a change in the mean, i.e., X; ~ N(uo,oz) fori<v, X;~ N(ul,oz) fori> v, the

Kullback-Liebler information number is given by (Therrien, 1989)
n = lim (logT /D)
T o
=1(6y,6;)

= (4,)" /202 (3-10)
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with

Ap = 1—Hg.
Thus the result can be directly related to the signal to noise ratio Au/o.
Notice that this result is consistent with the result obtained in (3-2) for

detecting jumps in the mean of i.i.d. Gaussian observations using the

nonlinearity

g(x)= 3_‘21(" Ho—A4p/2)

which results from the log-likelihood ratio test. For this nonlinearity:
= E{g(x)l6;}
Au
= — (M1 —Hg—Au/2
0_2 (#1 Ko U )
= (Au )2 /202

In the case of detecting a change in the variance of zero mean
Gaussian i.i.d. observations, the log-likelihood ratio results in a square law

type detector and is given by
g(x)=cx’+Iny
where

cloi-at . _<
2 0200 ’ O‘l.

Notice that for detecting an upward change (y < 1), ¢ is positive and Inyis
negative, while for detecting a downward change (y> 1), ¢ is negative and Iny
is positive. This explains the behavior of the Page test as illustrated in Figure

3.5. Thus, the performance measure is given by
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n = E{g(x)I6}

=c012+ln7
-2 _
..-é-['y l]+1ny (3-11)

which is as expected the Kullback-Liebler information number for this case.
The dosed form in which the asymptotic performance measure is
given allows one to compute easily the performance curves.
Figure 3.4 illustrates the performance curves when detecting a
disorder in the mean of Gaussian measurement (as illustrated by Figure 3.3)

using the optimal nonlinearity g(x) =%£2£ (x — po - Au/ 2) for different signal to

noise ratios (Equation 3-10). The predicted results obtained for the delay as a
function of a given SNR agrees with the simulation results shown in Figure
3.3 within a tolerance of up to 10 samples.

Figure 3.5 illustrates a changing variance Gaussian signal with
y= 1.2 (downward change), and change time at 150. Also, the optimal Page
test using the square law nonlinearity g(x) = cx2 + Iny applied to this signal is
shown. Notice that in this case of y> 1, F{g(x) | 6y} < 0 while E{g(x) |61} > 0 as
needed.

Figure 3.6 illustrates the performance curves for the square law
detector nonlinearity (3-11). Notice that when 07 — 0p which means that the
changes become undetectable, the bound given by Equation (3-11) turn to be
noninformative since 71 — 0. Thus, the delays obtained for values of y
approaching 1 are higher than those obtained for values of y which are
distant from 1. Notice also the bell curve shape of the ARL function for this

detection scheme (which is consistent with the example shown in Figure 2.9).
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Figure 3.6. Performance Curve Obtained for Page’s Test Implemented with
the Square Law Detector g(x) = cx2+Iny
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b. Locally Optimum Energy Detector for Spectral Signatures

Consider the case where we observe the energy spectral density of
a signal. Under the “no change” hypothesis we assume without loss of
generality that the background noise process {y} is normalized (i.e. 0 = 1)
White Gaussian Noise (WGN) and is grouped in disjoint blocks of M points
for processing via the Discrete Fourier Transform (DFT). Hereby we assume
that the sample blocks are mutually independent. The squared magnitudes of
the M complex outputs of the DFT are computed and these random outputs
denoted by {Xim},i=1,2,... ,m=1,2,.,M whereiis the block number and
m is the frequency bin number, form the Periodogram and are available as

the observations for the detection procedures. Namely,

{ L

Yim=y(iM+m) i=12,... m=12,.M.

Hereby, we are interested in detecting a change within a specific frequency bin,
while the method described here can be also used to detect a change from
block to block as was done by Broder (Broder, 1990), thus, our method
modifies Wolcin’s method (Wolcin, 1983) by looking for a change in an
orthogonal direction (frequency) to the direction (block) used by Wolcin’s.
Moreover, we use a narrow “window” of frequencies to detect changes within
several frequency bins in order to detect a certain spectral signature.

Under the white Gaussian noise assumption, the variables {X; m)

except the first one m = 1 the first frequency bin, are independent and
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identically distributed with exponential distribution and unity mean, having

the xl; distribution (Kay, 1988)
PO(xi,m) = exp{-xi,m }

Under the change hypothesis, the distribution of {X; ) containing the signal
in addition to the WGN, will also be presumed to be exponential but now
with mean y;» > 1. This is due to the fact that under the change hypothesis
Xim has a noncentral xi distribution with a noncentral parameter (Whalen,

1971) A > 0, thus the mean u of the non central x% distribution is given by

n=A+1>1.

Thus, if we assume that after the disorder u;,, does not depend on i, we have
— -1
Pl(xi,m) =Hm eXp{—X,'m /#m}'

This is the case when the signal itself is also a Gaussian signal which is
independent of the background WGN. Hence, the original hypothesis testing
of
Ho: {y;} ~ WGN
versus

Hy: {y;} ~ Gaussian signal + WGN

in the signal domain, is equivalent to the hypothesis testing in the spectral

domain.
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Ho:  Xim ~exp{-X; m} i=12,.. m=1,..,M
versus (3-12)

Hy  Xim~#pep{-Xim/ptm} i=12,., m=1,..,M
HUm > 1

Because the parameters {un,} are not known a priori, Page’s test with the
optimal nonlinearity the log-likelihood ratio cannot be implemented. Thus,
we will use composite hypothesis techniques such as the Locally Most
Powerful (LMP) test statistic. In Chapter II we introduced the local optimum

nonlinearity.

800(x) = = P(xi6) / P(x;6)

d In P(x;6+A6)
deé P(x:6)

A6 =0.

where P(x;6) denotes the observations density conditioned on the parameter
6. This test measures small deviations from the “null” hypothesis, hence, as
was shown in Chapter II, it maximizes the efficacy (incremental signal to
noise ratio) of the test.

Using this function for testing between the hypotheses y = 1 and
p > 1 for the case of univariate exponential distributions yields the following

nonlinearity
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. d P(xip >1)
= lim—log ———— 1
8t0(x) i 2 %8 B = 1)

-1 _
— lim L 10g A OPL=x/ 1)

plidy exp{-x}

d
= lim -2 (-logu -
“rﬁd#( ogu—x/p+Xx)

=lim(x/p?-pu7!
” “( H™ —H )
=x-1
Thus, gs(x) does not depend on u after the change, this results in a locally
most powerful test for all u > 1.

Implementing Page’s test for bin number m yields
gi,m = max{orgi—l,m + S(Xi,m )}

So,m =0
where g(X,-'m) =Xim—1-k (3-13)

where k is a positive parameter or reference value needed to bias the test for
the null hypothesis, such that E{g(x; m) | bm = 1} < 0, since Page’s test performs
better when the mean of the nonlinearity before the change takes place is
negative as opposed to zero.

At this point it is important to notice a robustness property of this
detector. Since the method is based upon detecting changes in the energy
(periodogram), and since it is assumed that the disorder is independent of the
background noise, the presence of the signal with a certain frequency

component will increase the total energy in the corresponding frequency bin




which is to be detected. Hence, the underlying signal model should not
assume a specific model for the signal.

The performance of Page’s test (3-13) is determined by the
parameters 4 and k. Hence, with two degrees of freedom the test results in
many pairs (a,k) that yield the same performance. The problem is to find a
specific pair which results in a high detection probability. In order to
determine the performance in this situation, notice that since the parameter
g is not known a priori, the performance measure 71 cannot be determined
since E{g(x) ! 6} is not explicitly known. Thus, we shall use Lorden’s bounds
(246), (2-47) and Wald’s bounds (2—48), (2-50) to obtain informative bounds
for the false alarm rate. In order to obtain these bounds it is necessary to find
the root h of the moment generating function identity (2~11) before the

disorder (Broder, 1990).

1= E{exp{h-g(Xim)lm =1} m=1,.,M
= E{exp{t-[X; m ~ 1~ k]l = 1]
= exp{-h(1+k)}- E{exp{hxi,m}wm = l}

= exp{~-h(1+k)} / (1-h) (3-14)

The root is shown to be a function of the bias term k. Figure 3.7
illustrates ti.is relationship. Notice that the root & does not depend on the
DFT length. This fact will be shown to be the key to the surprising
observation shown in the sequel that the SNR per bin does not depend on the

DFT length.
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Figure 3.7. The Root of the Moment Generating Function Identity (2-11) for
g(x) = x~1-k as a Function of the Bias Term k

Notice that the root is upper bounded by h < 1. Recall that by
(2-46) T 2 exp{h(6p)-a}. Thus, large values of h are desired. Recall also that 7 is
lower bounded by n. Consequently, for a given false alarm rate, a larger 71
corresponds to a smaller delay. Thus, from (2-55) it is clear that larger values
of h are desired, which means that biasing the test with larger values is
favorable.

In order to improve the poor statistical properties of the
periodogram (standard deviation of the order of the mean), a window of
length W = 3 that groups the expected frequency bin and the two neighboring

frequency bins was taken. Thus the statistic function g(x) was modified to
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1 my+2

3 3 (Xim —1-k) (3-15)

m=my

g(xi,m) =

where my, my,1, my,, are the frequency bins used by the window. A typical

time/frequency sample grid is shown in Figure 3.8.

. 32 points Dift periodogram,Grid(125%32)
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Figure 3.8. Time/Frequency Sample Grid

Notice that in this case the root location depends on the window

length since for that case the moment generating function has the form
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( mys2
1=E{exp h% Z(X,-’m ~-1- k) lu,-,,,, =1

m=my

("'l+2 h
=E ] exp{g(xi,m ~1- k)},ﬂi,m =1

Lm=m¢

(E{exp{g(xtm-—l—k»uan,=1}})3

=3 i - exp{—g(l + k)}

Figure 3.9 illustrates the root location for the given window W = 3.

(3-16)

Moment Generating Function, Implementing Eq.(3-15)
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Figure 3.9. Root of Moment Generating Function for
1 My

8(x) = 3 > (Xim —1-k)
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Notice that the root is upper bounded by 3. This implies that the mean time
between fal<e alarms T will be larger in this case than the previous one, since
with the same bias level a higher root value is obtained. However, if the

averaging of the window frequencies were done by the function

8(Xim)= mﬁ?x,-,m -1-k) (3-17)

m=my;

the root location would be the same as in (3-14), i.e., upper bounded by 1. This
may imply that the averaging method (3-15) performs better than the others.

The problem is that we would like to determine the performance
with a given pair of (a,k), but since the function g(x) was based upon a
suboptimal hypothesis test, only bounds (Lorden and Wald) can be derived.
To resolve this problem the following method is presented.

Consider that we are given the desired mean time between false
alarm T and some minimum value for u, say Umin(>1) cf u, for which we
can test. In this situation, Page’s test using the optimal nonlinearity, the Log-
Likelihood Ratio (LLR) can be implemented. This results in

g(x)=(1-A)x+logl (3-18)

where A=pmn

and Page’s test (3-13) is implemented with the function (3-15) and a new
threshold a” In order to find the relationship between the pairs (a,k) and

(a’)k) of the tests (3-13) and (3-15) we will use the following analysis:
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Ny =inf{i:  §; 24}, S; implemented with (3-13)
NpiR = inf{i: S; 2 a’}, S; implemented with (3-15)
Hence, we obtain
Ny =inf{ic  5q+ X m +10g[Ap / (1= Apn)] 2 @' /(1= A}

N,, =zinflii S 1+X;, —-1-k=2al. 3-19
Lo -1 im

To achieve the same performance requires that the following relationships

will sustain

a=a/1-2y,
k =1og[Ay /(1= Am)]-1. (3-20)

Notice now that for the log-likelihood ratio function h(6g) = 1. Thus, for the
given average time between false alarms, T, equation (2—46) becomes

Tzexpa'

Hence, the following procedure can be implemented:
o given T, the threshold a” which guarantees that requirement is given
by
a’ =1InT, (3-21)
e use (3-20) to find both the threshold a and the bias k needed for
implementing the local optimum test given T and u,,. Hence, this test
is now “tuned” for the desired performance.
To summarize, this procedure allows the use of optimal nonlinearity in order
to find the specific pair (a,k) needed to achieve the performance requirement

for the energy detector.
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A second and even more practical way to determine the test
parameters (a,k) is by using the SNR per bin which is required to meet the
performance requirements. Hereby, the notation S relates to the signal and N
to the noise (in the spectrum domain). Decomposition of the data yields

(provided that energy exists only in one of the frequency bins)

$+N: E{g(x)|91}=% :zm({ m}-1-K)
-1

_Hm~—1! -k

Thus,
SNR =pu,, -

n
= 3[—1(—)+kj’ (3-22)

Notice that k and h(k) were determined to achieve a given lower bound for T,
thus, 7 given by (3-8) determines the asymptotic ratio for the desired pair
(T,D). Hence, using equation (3-22) ennbles us to find the corresponding SNR
per bin which is required to achieve the desired performance. Figure 3.10
shows the SNR required per bin as a function of the bias term k for different
values of the asymptotic measure 7. Notice that each given k corresponds to
a certain T, thus, the corresponding delay value, D, is found from the graph by
using the assigned 7 needed for certain SNR.

Analyzing (3-22) reveals an important result. Larger values for 1

correspond to a smaller delay, D, in detecting a disorder. Thus, larger values
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Implementing Nonlinearity (3-15)
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of k are needed. If the function (3-13) had to be used, the SNR per frequency
bin would remain the same. Thus, using (3-15) does not improve the
minimal SNR required per bin to achieve some level of detection probability,
but improves the overall performance by having a lower false alarm rate.
However if we implement nonlinearity (3-17), decomposition of the signal
and noise yields (provided that energy exists only in one of the frequency

bins)

myy2

E{g(Xim)er}= Y (E{Xim}-1-k)
m=my
=u-1-3k
e
hk)
hence, the minimal SNR per frequency bin is given by
SNR=pu-1
=1 -
w0 + 3k. (3-23)

Figure 3.11 illustrates the SNR function as a function of the bias k for the
nonlinearity (3.17). Hence, there is an SNR improvement of the order of
1-3dB. This is a surprising result because one would expect that since the root
for (3-17) is upper bounded by one as opposed to the root of (3- 15) which is
upper bounded by 3, the overall performance of (3-15) will be better. Thus, a
tradeoff between the delay and the minimal SNR required for detection is

determined by the bias k. Moreover, analyzing (3-23) reveals an important

result. Larger values for n correspond to lower delay and better detector
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performance, thus, larger values of k are needed. But this is opposed to
having lower values of k which are needed to obtain the required SNR per
bin. Hence, the chosen bias term k should reflect a tradeoff between these two
conflicting requirements.

Simulation results were done by using the function (3-17) data
records of length 4000 samples where the change point was at sample 2000
(i.e., middle of the record). The Nyquist frequency used was 500Hz, and at the
change point the transition was from 62Hz to 156Hz. We used two
algorithms, one of which uses a 32-point DFT producing a time/frequency
grid of (125x32) points and the other uses a 128-point DFT producing a
time/frequency grid of (30x128) points, where the corresponding processing
gains are 12dB and 18dB respectively. Hence, using Figure 3.10 allows one to
predict the detection performance. An incoming signal with input SNR of
-3dB cannot be detected by using a 32-point DFT since the output SNR is 9dB,
which is below the minimum SNR per bin required for detection. By using a
128-point DFT, the output SNR is 15dB, which is about 3dB above the
minimal SNR required for detection. The same analysis done by using
signals with input SNR of —6dB reveals that the 32-point DFT cannot detect
the changes, while a 128-point DFT copes with the detection successfully.
Figure 3.12 illustrates the time/frequency grid for the case of using a 32-point
DFT with input SNR of —6dB, while Figure 3.13 illustrates Page’s test
implemented on bins 19, 20, 21 (bin 20 being the 156Hz bin) by using a
128-point DFT to detect energy at 156Hz with input SNR of -3dB and -6dB
respectively. Similarly, Figure 3.14 illustrates Page’s test implemented on bins
4, 5, 6 (bin 5 being the 156Hz bin) by using a 32-point DFT with input SNR of
-3dB and —6dB respectively.
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Figure 3.13. Page’s Test Implemented on Bins 19, 20, 21 of a 128-Point DFT
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In order to compare the detection performance of the Page test
with a conventional detection scheme we refer to Whalen (Whalen, 1971) in
which the performance (Receiver Operating Characteristic—ROC) for
detecting M independent sinewave samples in white Gaussian noise by using
a linear detector (which is the locally optimum detector for Gaussian signals,
see Kassum, 1988), is analyzed. Even though the detection is not based on
energy, the comparison presented in the sequel indicates better performance
of our method. Figure 3.13 illustrates the Page detector implemented on a
128-point DFT. For an incoming signal with SNR of —-6dB the delay for
detection is 4 blocks and the minimum SNR required for detection (using the
proper bias value to minimize the SNR) is about 12dB for =10 and about
6dB-8dB for n=1. The corresponding bounds for the false alarm rate are 10-40
and 104 respectively. Figure 3.15 illustrates the ROC for a linear detector for
detecting four independent samples (equivalent to delay in detection of four
blocks) of a sinewave in white Gaussian noise (Whalen, 1971, p. 250) where
the parameter is the SNR required for detection. For this classical detection
scheme the ROC is in terms of Pr4 versus Pp. Thus, to compare the
performance of these two methods we refer only to values of Pp—1 to reflect
that the detection is almost surely certain. Figure 3.15 illustrates that for
values of 6dB-8dB the performance of the linear detector is very poor since
the P4 is in the order of 10-1-10-3 respectively, while for the Page test it is at
least 10-4. Furthermore, for the linear detector as the Pra is lowered, at a
given (fixed) SNR the Pp decreases, while for the Page detector, equivalently
lower Pry (corresponding to higher mean time between false alarms) requires
a higher threshold and reflects in a higher delay but still, the detection is
guaranteed. In the operating ranges of above 9dB (which is the typical
operating range for this type of detection) the Page test is shown to have better

performance than the conventional linear detection.
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Figure 3.15. ROC for Detecting Sinewaves in White Gaussian Noise (four
samples averaged). From Whalen, 1971.
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2. Non-Parametric Detection

Hereby we will consider only the sign detector defined as

1 forx20
g(x)=

~1 forx< 0.

This nonlinearity is sometimes also referred to as random walk nonlinearity
since the output g(x) is a random walk. Thus, results from random walk

theory can be used. Define:

p(6) = Pr{g(x) =186}

q(6) = Pr{g(x) = -116}.
If p(6) # q(6) there is a positive probability that the process will drift to +eo if
p(6) > q(6) (and to —= if p(0) < q(6)). Thus assuming that E{g(x)! 6} < 0 yields
p(6p) < g(6p) while assuming E{g(x) | 6;} > 0 results in p(6;) > q(6,).

The moment generating identity is given by

E{exp{h(6p)- 8(x)}|60} = p(60)exp{h(6p)- (+1)} + 4(6p)exp{h(6p)- (-1)}
=1

Consider h(6) = ln;)q(ig(%), thus,

N

4(6o) _ p(6p)- %) i
ool o] e 3

= p(6p)+4(6p) = 1

N—

Hence,

122




and

E{g(x)6:} = p(61)-4(61) > 0.

The result is that the lower bound on the performance measures is given by

n= [P(el)"q(el)]log%%%.

In order to evaluate the performance measure 7, we will use results from
random walk theory (see Karlin and Taylor, 1984, p. 109) for the
approximation of the ARL function of Page’s test as done by Broder (Broder,
1990).

a

L

q

o)

6

Pt

—]—

—a| if p(6) = q(6).

(3-24)

Since under 6y, q(6p) > p(6p), the average time between false alarms for large a

can be approximated as
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Under 6y, p(6,) > g(61), hence, the average delay for large a is given by

a

D~Zen—q6)

hence, the performance bound 7 is given by (Broder, 1990)

n = lim logT
a—e D

log[ 4(90)}‘1

) a/[p(91)—q(61)]

=[P(91)'9(91)]108%

P
—~~
S
o’

=H,

Using this result allows the comparison of Lorden and Wald bounds

with the approximated results from random walk theory.
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For the simulation results we considered the symmetric additive

signal in noise situation, i.e.
P(x-6) i=0
P(xl 9,') =
P(x+6) i=1

and the noise environments considered were Gaussian and a Gauss-Gauss
mixture. In order to calculate the p(6) and g(6) parameters as a function of the

signal and noise parameters consider the following
Pr{g(x) = #1} = Pr{x 2 0},

Thus, by knowing the mean of the incoming signal we can use the
complementary error function to derive both the Gauss and Gauss-Gauss

mixture cases, as shown in Figure 3.16. For the Gauss-Gauss mixture

p(61) = (1-€)p(61)+ em(61)

4(61)=1-p(61)
for which p(6;) < q(68). It follows from the symmetric signal assumption

(4o = —y1) that
p(60) = 9(61)

4(60) = p(61)

which results in the desired situation of g(6p) > p(6p).
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Figure 3.16. p(6) as a Function of the Signal and Noise Parameters
(Symmetric Case, Gauss-Gauss Mixture)

As shown in the previous example, the root of the moment
generating function is needed for Lorden’s and Wald’s approximation. Figure
3.17 illustrates the root position for different pair values of (p,q). We see that
as p(6p) < 0.5 becomes larger, the root is smaller which indicates that for a
given false alarm rate the delay for detection will be larger due to the fact that
p(6o) approaches q(6p), resulting in a difficult decision situation. In the
neighborhood where 4(6y) is slightly larger than p(6p) E{g(x)! 6y) = 0. In this
situation, biasing the test is needed since the root approaches zero and the

bound 7 is not informative anymore.
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Figure 3.17. The Root of the Moment Generating Function for the Sign Test

Figure 3.18 illustrates Lorden’s, Wald’s, and the random walk
approximation (3-20) as functions of the threshold a for a certain case where
before the disorder the difference between p(6p) and g(6p) is large enough.
The results indicate good detection bounds. Figure 3.19 illustrates the same
approximations but now when g(6p) approaches p(6y), the degradation in
performance is shown to be in the order of several magnitudes. The values
for q(6p) and p(6y) were chosen to simulate two cases of Gauss-Gauss
mixtures, resulting in p(6p) = 0.15, g(6p) = 0.85 for the first case, and p(6y) = 0.4,
q(6n) = 0.6 for the second case.
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Figure 3.18. Sign Test. Mean Time between False Alarms for
p(8p) = 0.15, g(6p) = 0.85
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Figure 3.19. Sign Test. Mean time between False Alarms for
p(60) = 0.4, q(6p) = 0.6

To analyze the delay for detection we use a similar technique, but
since we now explore the situation after the disorder, we consider the two
corresponding cases where p(6;) is larger than 4(6;) and where p(6;)
approaches g(6;). The results are similar to those obtained in the case of the
false alarm rate and are shown in Figures 3.20 and 3.21 in the form of
performance curves for Page’s Test implemented with the sign detector. As
in the previous case, p(6;) and q(6,) correspond to the same Gauss-Gauss

mixture parameters.
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Sign Detetor Performance Curve
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Figure 3.20. Performance Curves for the Sign Detector
p(6o) =0.15 q(6) = 0.85
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Figure 3.21. Performance Curves for the Sign Detector
p(6p) =0.4 q(6) =0.6

E. SUMMARY

In this chapter we have described the problem of the change detection and
of the joint estimation of the change time and the model parameters. Within
this framework, only the problem of the quickest detection has been
investigated by using Page’s test. In the parametric framework, the linear
detector and the square law detector were shown to be optimal in the sense of
quickest detection of changes in the mean and variance of Gaussian
observations. In both cases performance measures were derived and shown
to be consistent with the actual results of simulations. A new algorithm for

detecting changes in the spectral energy was implemented based on locally
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optimal testing and shown to be consistent with the analytical performance
results obtained for this test. The bias of the test was shown to reflect a
tradeoff between the detector performance and the minimal SNR required for
detection. Finally, the issue of non-parametric detection was investigated by
implementing Page’s test with the sign nonlinearity and testing the

performance under Gauss and Gauss-Gauss mixture noise distributions.
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IV. BROWNIAN MOTION APPROXIMATION TO CUMSUM
PROCEDURES

A. INTRODUCTION

In sequential analysis additional simplification results from
approximating sums of independent random variables Z?ﬂxi in discrete time
by a Brownian moiius process {B(t), t 2 0} in continuous time. Moreover, for
cases where the observations do not form a Gaussian process, the discrete
time process can be approximated by a Brownian motion process which is
Gaussian. For further discussion on this subject see Reynolds (Reynolds,
1975).

To understand the motivation of the use of the Brownian motion process
as a continuous approximation to the random walk (which describes the
cumsum procedures), let xq, x;, ... be independent and normally distributed
with mean u and unit variance. If {B(t), t > 0} is a Brownian motion with
drift u, then S, = Z:__]x,- and B(n), n = 0, 1, ... have the same joint distribution.
The analogy is clear: Brownian motion is an interpolation of the discrete
time random walk S, which preserves the Gaussian distributions to the
extent that a random walk process is approximately normally distributed for
large n. Thus, the Brownian motion process may be used as an asymptotic
approximation to a large class of random walks and hence of log-likelihood
ratios. A good reference for a detailed discussion of this point is Siegmund
(Siegmund, 1985). This chapter concentrates primarily on Brownian motion

approximations to cumsum procedures (specifically the Page test). A
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continuous Brownian motion process {B(t), t 2 0} is used as an approximation
to cumulative sums 2(g(x) + k) which form Page’s test. The original problem
of detecting a disorder as described in Chapter II, is now modified in the sense
that it can be viewed as a shift in the drift of a Brownian motion

approximating a cumsum procedure.

1. Problem Statement
Let v be the time of shift and let 4 > 0 be the amount of shift in the
drift of a standard Brownian motion {B(t), t 2 0}, B(0) = 0. Consider the

observation process
W) = u(t-v)" + B(t), u>0.

Thus the observation process is a Brownian process with drift 0 up to
the point of shift v, and u after that.

The Page test applied to Brownian motion is defined as follows: stop
at the smallest ¢ for which the one-sided test with boundaries 0 anc a stops.
The test is repeated if the lower boundary 0 is reached before a. Define the

stopping role to be as

N =inf{t: S(t) 2 a)
where

S(t) = (W(t)+ kt) — min (W(s) + ks)

0<s<t
for detecting a one-sided positive shift in a drift and

S(t) = max(W(s)+ks) - (W(t)+kt)

0<s<t
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for detecting a one-sided negative shift in a drift. The variable k is the
reference value or the bias of the test. (Recall the fact from Chapter II that it is
advantageous to bias the test). Hence, this procedure has two degrees of

freedom, k and a to achieve a given desired performance.

2. Organization of this Chapter

The primary goal of this chapter is to analyze the performance of the
Page test using the Brownian motion approximation, namely, the evaluation
of the Average Run Length (ARL) function under the disorder (Delay) and
under no disorder hypothesis (mean time between false alarms). These
approximations will be compared with the results obtained in Chapter III, and
a new error (bias) term which enables the “training” of the Brownian motion
parameters (drift and variance) and Page’s test parameters (k and a) will be
presented.

In Section B, general theory about diffusion processes and the related
stopping time problems is presented. The first threshold crossing time and
hitting probabilities are shown to be reduced to solving 2nd order differential
equations. The relation to the Page test is introduced and a new bias term
which enables the comparison of the accuracy of the calculation is presented.

Section C deals with the approximation to the ARL functions of the
cumsum procedure and an explicit form for the bias is calculated.

Simulation results are presented in Section D and compared to
simulation results presented in Chapter III. Also, a new error (bias) term
which enables the “training” of the Brownian motion parameters and Page’s
test parameters is introduced.

A short summary is presented in Section E.




B. GENERAL THEORY ABOUT DIFFUSION PROCESSES AND RELATED
STOPPING TIME PROBLEMS
In this section general properties of diffusion processes will be presented.
It will be shown that many functionals, including the first threshold crossing
time and associated probabilities, boundary behavior properties and stationary
distributions of cumsum procedures, can be approximated by using one-

dimensional diffusions.

1. General Description and Definitions

Definition (Karlin and Taylor, 1981). A continuous time parameter
stochastic process which possesses the (strong) Markov property and for
which the sample paths X(t) are (almost always) continuous functions of ¢ is
called a diffusion process.

Consider a diffusion process {X(t), t 2 0} whose state-space is an
interval I with endpoints I < r. Such a process is said to be regular if starting
from any point in the interior of I, any other point in the interior of I may be
reached with non-zero probability. Henceforth, without further mention, we
shall consider only regular diffusion processes.

Dynkin Condition (Karlin and Taylor, 1981): A sufficient condition

for a standard process X(t) to be a diffusion process is the Dynkin condition:

Eir(\)%Pr{IX(t + )= X(t)> gX(t) = x} = 0 (4-1)

for all x in I. 0
This relation asserts that large displacements of order exceeding a

fixed €, are very unlikely over sufficiently small time intervals. This is in fact
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a formalization of the property that the sample paths of the process are
continuous.

All diffusion processes are characterized by the mean and the
variance of the infinitesimal increments. Let AX(t) be the increment in the
process accrued over a time interval of length h, (i.e, AX(t) = X(t+h)-X(t)),

then

gﬁ\)%E{AX(t]x(t) =x} = pu(x,t)
and (4-2)
}liir(;%E{AX(t)ZIX(t) = x}= o (x,1).

The functions u(x,t) and 0%(x,t) are called the drift and diffusion
parameters, respectively. In the time homogeneous case, the functions u(x,t)
= u(x) and 6%(x,t) = 0*(x) are both independent of t.

A Brownian motion process (sometimes called the Wiener process) is
a regular process on the state-space I with parameters u(x) = 0 and 2(x) = &
for all x. Adding a trend ut to the Brownian motion B(f) produces a
Brownian motion with drift B(t) + ut. In this case, the drift parameter is g,
while the diffusion parameter remains ¢2.

The Brownian motion process {B(t),t 2 0} has the following
properties:

* B(0)=0.
e {B(t), t 2 0} has stationary and independent increments.

e for every 2 0, B(t) is normally distributed with mean 0 and variance 2.
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When ¢ = 1, the process is called the Standard Brownian motion. Notice that
any Brownian motion can be converted to the standard process by scaling via
B(t)/c.

The behavior of the diffusion process X; = {X(t), t 2 0} can be modeled

by nonlinear stochastic differential equations of the form

dXy = p(Xy,t)dt + o(Xy, t)dB,, t20

with initial condition X, where u and o are the drift and diffusion
parameters as defined by (4-2) and where {By, t 2 0} is a standard Brownian
motion. Thus, dB; has the interpretation as a “white” noise driver. This

notation is shorthand for the integral equation
X =X +ru(X s)ds+Jto(X s)dB
t 0% ) 57 0 s’ 5

This integral representation of a diffusion process demonstrates the Markov
property of the diffusion. That is, given X, for each s > 0 {X;, t > s) and
{Xt, 0 <t < s} are independent. This property is easy to see since for any t 25 2

0, we can write
t . t
X=X+ Lu(Xu,u)du +Iso(Xu,u)dBu.

This equation indicates that {X;, t > s} can be constructed completely from X,
and {By,t 2 u 2s}. Thus, with X, fixed, {X;, t 2 s} is generated independently of
{X}, t < s} since (Bt - B, t > s} is independent of all the past.

The following theorem determines the parameters of Y(t) = g[X(#)],
where X(¢) is a regular diffusion process.
Theorem (Karlin and Taylor, 1981): Let {X(t), t = 0} be a regular diffusion

process with parameters u(x) and 0*(x) whose state-space is defined on I = (I,7).
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Let g be a strictly monotone function on I with continuous second derivative
g”(x) for I < x <r. Then Y(t) = g[X(t)] defines a regular diffusion process on I

with the parameters

py(y) =5 (@) (3) + 1(x) )
o} () = o*(x)-[s'()]"- (4-3)

2. Stopping Time Functionals of Diffusion Processes
In this section we analyze stopping time problems using properties of
diffusion processes. It is assumed that {X (1), t > 0} is a regular, time
homogeneous diffusion process. Let a and b be fixed, subject tol <b<a<r,
and let T(z) = T, be the hitting time of z defined by
oo if X(t) # z Vt>0

inf{t > 0; X(t) = z} otherwise.

We use the notation

T* =T, = T(a,b) = min{T(a), T(b)}
to denote the first time X(¢) = a or X(¢) = b. For processes starting at X(0) = x in
(a,b), this is the same as the exit time of the interval (a,b):

T(a,b) =inf{t 2 0;X(t) ¢ (a,b)}, X(0)=x€(a,b).

a. Stopping Time Related Problems
This section concentrates on three problems related to the first
hitting time of a diffusion which are relevant in the case of the cumsum

procedure.
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Problem 1. Find
u(x) = Pr{T(a) < T(B)X(0)=x} b<x<a (4-4)

that is, the probability that the process reaches a before b.
Problem 2. Find

v(x)=E{T*|X(O)=x} b<x<a (4-5)

which is the mean time to reach either a or b.

Problem 3. For a bounded and continuous function g, find
T*
w(x) = E{fo 8(X(s))ds|x(0) = x} b<x<a (4-6)

Since the sample paths of the diffusion processes are continuous (4-1), the
integral A =j(')r‘ 8(X(s))ds is defined. If g(x) represents a cost rate incurred
whenever the process is in state x, then A would be the total cost up to the
time when either a or b was first reached. If g(x) =1 for all x, then A = T*, the
time to reach a or b, so that problem 2 can be considered as a special case of

problem 3.

b. Solutions of the Stopping Time Problems
A convenient reference for the solution of these three problems
is Karlin and Taylor (1981, Ch. 15), where it is shown that u(x), v(x), and w(x)
possess two bounded derivatives for b < x < a, and that these functions satisfy
the following differential equations:

Solution Equation for Problem 1

X)— for b<x<a, u(b)=0,u(a)=1 (4-7)
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Solution Equation for Problem 2

do 1 d?p
~1= —_—— e f b , b)= =0. (4-8
u(x)dx +3 ai(x)dx2 or b<x<a, o(b)=0(a) (4-8)

Solution Equation for Problem 3

i

-3(x) = H(xY e + 30

for b<x<a, w(b)=w(a)=0.(4-9)

In order to solve these three problems we need to use several new functions.

Let

s(x) = exp{—fx ;ﬂ—tgd&} for l<x<r (4-10)

be the scale density of the process. The use of an indefinite integral will

become clear later. Next, the scale function of the process is defined by
S(x) = [*s(m)dn (4-11)

and finally, the speed density is given by
m(x) = 1/[0‘2(x)- s(x)] for I<x<r.

Using these definitions, the solution for Problem 1, namely the probability of

hitting a before b is given by:

u(x)=————5 b<x<a. (4-12)

The solution for Problem 3 is given as
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w(x) = 2{ux)- [15(6) - S(&)] m(2)g(Eee
1-u()]f[[5(6) - )] m(&)g(e )z (4-13)

The solution for Problem 2 is obtained by letting g(&) = 1.

Notice that the solution for w(x) can also be written as:

w(x) = [ G(x.&)g(£)dE, (4-14)

where:

G(x,&) =1 (4-15)

b<é<x<a

The function G(x,{) is called the Green function of the process on the interval
[ba).
Determining the mean time prior to T* that the process spends in

the interval [£, §+4) is equivalent to evaluating
w(x) = E{ 7 s(x(s)uslx(0)= x}
for
1 ¢é<x<é+4
{0 otherwise

and following the format of (4-14), this is

_ E+A

w(x) = v(x) = E{AT|X(0) = x} ;

G(x, n)dn (4-16)
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we see from (4-16) that G(x,£)d¢ measures the mean time AT prior to T* that

the process spends in the infinitesimal interval [£,£ + d£] given by X(0) = x.

c¢. Some Examples of Functional Calculations
Given the solutions (4-12), (4-13) and (4-16), some cases of
interest will be examined.
(1) Standard Brownian Motion. Let {X(t), t 2 0} be a standard

Brownian motion with parameters u(x) =0, 02(x) = 1. Then,

s(x) = exp{-zfx—:%dé} =1

The scale measure is given by

S(x) = x.

Thus, u(x), the probability of hitting a prior to b, with initial state x, is
-b
u(x) =27 bsxs<a (4-17)
The speed density in this case is

1
m(§)=§5=l

and the Green function (4-15) for the interval [b,a] is

2(_x__b_)(f.:_9 b<x<E<

G(x,&) = 2(5(‘11)-)(11) )' sxscsa
~b)a-x

—-————-—(a_b) , b<é<x<a.

Direct calculation from (4-14) gives
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o(x) = E{T, X(0) = x} = [;G(x,£)d¢

=(x~b)a-x) b<xs<a (4-18)

Remark. A process {X(t} whose scale function is linear S(x) = x, is said to be of
natural or canonical scale since the hitting probability (4-17) is proportional to
actual distances.

Notice that the scale function can be used to rescale the state-
space (I,r) in terms of probabilities of achieving various levels, and this use
motivates the name. If a point xy is fixed as the origin, we can easily
determine a new scale function by performing a translation, causing S(xp) =0
and form a process Y(t) = S(X(#)) on the interval (S(I), S(r)). Since S is strictly
monotone and twice differentiable, the use of Theorem (4-3) establishes the

infinitesimal parameters of the process {Y()}:
uy(y) = %a 2(x)S"x) + p(x)S1x)
and
oi(y) = % (x)-[S'(0))? = 6*(x) s*(x) where y=S(x).

The scale measure for {Y(t)} process is Sy(y) = y, thus, the use of the scale
function enables one to transform a process to a natural scale.
(2) Brownian Motion with Drift. If {X(t), t > 0} is Brownian

motion with nonzero drift u(x) =u and variance ¢, then:

s(x) = exp(-2ux/c?) (4-19)

S(x) = A exp(-2ux/o?) + B (A and B constants),
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and

¢2ux/ 0% _ -2ub/c?
u(x)= = b<x<a (4-20)
-2Ha/a? _ ~2ub/c

3. Instantaneous Return Processes and the Relation to Page’s Cumsum
Procedure

This section introduces a certain boundary behavior of the diffusion

process that defines an Instantaneous Return process. This process is shown

to describe any cumsum procedure and forms the basis for the approximated

ARL function. It enables also the derivation of a new bias term which is used

to evaluate the accuracy of the approximation.

a. Instantaneous Return Processes (Karlin and Taylor, 1981)

Consider a diffusion {X (t), t > 0} on the state-space I = (I,r) and let
I <b<a<r. A return process Z(t) relative to [b, a] shown in Figure 4.1 and is
defined as follows: Starting at a point xp in (b, a), the process is returned
instantaneously to xo whenever b or a is reached. After such a return, the
subsequent process behaves just like X(t). This process is repeated at each
attainment of level b or a.

The resulting process Z(t) consists of recurrent cycles of random
time duration Tq, T2, T3, ..., where T; are independently and identically
distributed, with the same distribution as T,, = min{T,, Tj}, the first exit time
from the interval (b, a), starting from xo (stationary process). It follows from

(4-16) that

E{Ti|X(0) = xo} = [ G(x0, £)d¢ (4-21)
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where G(x¢,£) is the Green function of the process X(t) relative to the state-

space (ba).

Let P(t,y) be the density function of Z(t). Thus,

P(t,y)dy = Pr{y < Z(t) < y +dy|Z(0) = xo}.

Define the limiting density of Z(t) as

a(ylx) = lim P(t,y). (4-22)

o0

To do so, consider an interval {y,,is2] such that b < y; < y2 <a and define the

indicator process {I(t), t 2 0} by

1
I(t) =
0
from Figure 4.1, we see that
Pr{I(t)=1} =

if y1<Z(t) <y

otherwise.

E{1()} = [ P(t.y)dy. (4-23)

Recalling the renewal theorem (Ross, 1989) (Feller, 1971), we can deduce that

lim Pr{I(t)=1} =

E{time spent in (y;,Y,) in a cycle|Z(0) = xo}

t—rc0 E{time duration of a cyclgZ(0) = xo}

y2 .
G(xg,§)dé
_ _[yl (x0,&)dS

I:G(xofi)dé |

Using (4-23) we get

(4-24)
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lim Pr{I(t) =1} = lim 2 p(t,y)dy

e t—o0”¥1

. J:;Z G(xg, ¢
fictxexg

Since this holds for every y;, y2 € (g, b), it follows that
a(ylxg) = lim P(t,y)
{00
- G(xo,y)

- b<y<a (4-25)
J,G(x.£)d¢

The stationary density of the instantaneous return process a(y | xg), can be

interpreted as the proportion of the mean time spent at state y in one cvcle T;.

[
Z()

Figure 4.1. Instantaneous Return Process
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b. Relation to the Cumsum Procedure
Let N denote the stopping rule based on the cumsum test with

reference value k stopping boundary a and restarting boundary b,
N =inf{t:X(t) 2 a} (4-26)
where

X(t) = (W(t) + kt)~ min (W(s) + ks)

O<s<t

is based on the observation process
W(t)=pu(t-v) +B(t), u>0 (4-27)

where (x)* = max(0,x), and p defines the amount of shift in the drift of a
standard Brownian motion B(t) with B(0) = 0, at the point of shift v. The
reference value k is chosen to minimize the Delay for detection.

Before the shift occurs, the reference value guarantees that the
test will hit the lower boundary and cause a restart. Each restart will force the
process to return to the initial state xo and start once again, thus, the restart
process can be considered as causing an instantaneous return process.

Notice that before the shift occurs, the process W(t ) is a Brownian
motion with drift k, while after the shift (change) in drift occurs, W(t) is a
Brownian motion with drift g+k. Let L be the number of restarts before the
shift, and let {N;} be the corresponding run length intervals of the test until
the shift is detected (i = 1, ..., L+1). Hereby, we follow the analysis as given by
Srivastava and Wu (Srivastava and Wu, 1990).

L+1

L
Y Ni<v< Y N;.
i=1 i=1
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The average delay time is given by

L+1
D(t)= E,{ZN,- - t}

i=1
where E;{'} denotes the expectation when the shift occurs at a fixed time t.

The asymptotic average delay time or the stationary average run length is

defined as

ARL = lim D(#). (4-28)

t—e

We denote ARL,(xg) as the Average Run Length of the diffusion X(t) when
the shift in the mean is u at the initial state Xp = xo. Similarly,
ARL((0) = ARLj denotes the ARL under no change, namely, the ARL when
there is no shift in the drift and the initial state is zero. Hence, ARLj is the
mean time between false alarms (with initial state zero).

Under our assumptions, the instantaneous return process caused
by the restart process will be at some stationary state, say y, when the shift
occurs. Denote the stationary density of this state y as a(y | xg). Figure 4.2 is the
appropriate picture to guide the analysis. Suppose that we use this state y as a
new initial state for the detecting process with shifted mean to find ARL,(y).

Thus, the stationary average delay time (4-28) is given by
ARLy(xg) = [ ARLy, (y)a(y | xo )dy. (4-29)

Notice that ARL p(xp) can be interpreted ir. two ways. First as a weighted
average of ARLs under disorder over the set of all possible initial states y

taking into account the effect of the distribution of run length before the

disorder. Second, time-wise, ARL ,(x¢) takes the weighted average of all
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possible places of shift (since for each realization of X(t), each different y is
related to a different shift time), conditioned that the shift occurred. Since

ARL,(y) is a decreasing function of y, we obtain that

‘ possible

t._ places of
X0 v " shift

vy — — _ = = —_ =} = — - —

O N —— ______J_

ARL,(y) |=—

N L-1 N L N L+1

Figure 4.2. The Cumsum Process X(#) as an Instantaneous Return Process

ARLy(xg) < ARL,(y)

Since the location of the change point v is not known inside the last run
length interval N1, the approximated ARL should take into account all the
possible places of shift within the last run length interval, thus, the
approximated stationary ARL under change (Delay) is obtained by (4-28) and

(4-29) while the bias of the approximation can be obtained by
bias(xg,u) = ARL,(xg) — ARLy(xp). (4-30)

Hence, (4-30) “measures” the effect of the point of shift in the limiting

situation for the cumsum procedure. In the following section, we will use
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the theory of this section to derive the diffusion approximation to ARL,,
ARL,(y) and ARL for the cumsum procedure. These approximations will be
used to compare and measure the accuracy of the theoretical results derived

in Chapters II and III.

C. BROWNIAN APPROXIMATIONS TO THE ARL FUNCTIONS OF THE
CUMSUM PROCEDURES
The approximation to the run length functions for the one-sided Page test
for an increase in the drift, will be obtained with the aid of the following two
lemmas. Before presenting the lemmas, one key principle of the diffusion
process which is relevant in our case needs to be addressed. This will be done

in the following section.

1. The Reflection Principle (Karlin and Taylor, 1968)

A Brownian motion with a reflecting boundary at zero behaves as a
standard Brownian motion in the interior of its domain (0,=). However,
when it reaches its zero boundary, then the sample path returns to the
interior in a manner of that of a light wave reflection from a mirror. In
general, consider {Z(t), t 2 0} with Z(0) = 0 and Z(t) >a (a > 0). Since Z (t) is
continuous and Z(0) =0, there exists a random time 7 at which Z(t) firsts

attains the value a. For t > 17, we reflect Z(¢) about the line z = a to obtain
Z(t) fort<t
X(t) = (4 -31)
a-[Z(t)~a] fort>1

(see Figure (4.3). Note that X(t) < a since Z(T) > a. Because the probability law

of the path for t < 7, given X(1) = a, is symmetrical with respect to the values
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x >a and x < a and independent of the history prior to time 7, the reflection
argument displays for every sample path vith Z(T) > a, two sample paths X(t)

and Z(t) with the same probability of occurrence.

IZ(t)
a | . _ _ o _ ~ L

P

I X(t) - Reflectbd process
| |
0 ' L.

0 T T

Figure 4.3. The Reflection Principle about Line a

The following lemma establishes the fact that the Page cumsum procedure
(X(t) given by (4.26)) with boundaries (0,4) results in a Brownian motion with
an absorbing barrier at @ and a reflecting barrier at 0. The second lemma uses
the fact that the reflecting barrier is at 0 to obtain the result that before the
disorder, the process X(t) with a reflecting barrier at 0, can be viewed as the
absolute value process (set a = 0 in (4-31)). Thus, the reflecting boundary
phenomenon is equivalent to setting X(t) = 1Z(#) 1.

Lemma 1 (Bagshaw and Johnson, 1975)

Before the shift occurs, the process X(t) given by (4-26), has the same
probability law as a Brownian motion W(t) given by (4-27) with drift k and a

reflecting barrier at 0. 0
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Lemma 1 applies to any diffusion type process. It states that before the
shift occurs, X(¢t) = (W(t) + kt) — ming<s <(W(s) + ks) and | W(¢)| have the
same distribution. Moreover, the distribution of the first passage time of X(t)
to a can be determined by finding the distribution of the first passage time of a
process with a reflecting barrier at zero to an absorbing barrier at a. Thus, it is
clear that after the shift occurs, X(t) and | W(t)| do not have the same
distribution (since a is an absorbing barrier).

Using the results of lemma 1, two alternative methods can be used to
get the desired approximation for the ARL function. The following two

subsections describe these methods.

2. Direct Calculation of the ARL Function via the Functional (4-8)

Let {X(t)} be a Brownian motion on I = [0,.0) with drift 4 and variance
parameter o2, where 0 is a reflecting boundary. Let T, be the hitting time to
level a > 0, and set v(x) = E{T;| X(0) = x} for 0 < x <a. Then, v(x) is obtained by
solving the differential equation (4-8) and is given by (Bagshaw and Johnson,
1975) and (Karlin and Taylor, 1981):
l[(a-x)—i(e'zy"—-e"zw)] pu#0

H 2y
v(x) =+ (4 -32)

a -x
3
o

H=0

where

y=H/02%

153




Recall that before the shift occurs, X(t) is a Brownian motion with drift k, and
since Xp = 0 (Page’s cumsum test), the ARL before the shift is obtained from
(4-32) as follows by setting p = k

l[a——l-(l—e‘“‘)] k#0

2y

ARLg = ARLy(0) = (4-33)
2

a_
L0?

»

k=0

where
y=k/ a2
After the shift, X(t) is a Brownian motion with drift u+k, and since the initial

state is given by Xo = y (see Figure 4.2), the ARL after the shift is given by

ARL,(y) = (111—@[“'3"

1 =27y _ ,-27%a
2)’*(8 -e ) 0<y<a (4-34)

where

r*=(u+k)/ o’

3. Calculation of the ARL and ARL Functions using the Green
Function

Lemma 1 established the result that before the shift occurs, X(t) has

the same probability law as a Brownian motion with drift k and a reflecting

boundary 0. The following lemma uses this result to transform the reflected

Brownian motion into another diffusion process, for which we can use

theory established in the last section, namely, the use of the Green function to

derive the ARL function.
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Lemma 2 (Karlin and Taylor, 1968)
Let X(t) be a Brownian motion with reference value k (bias) as defined in
(4-26). Then, before the shift occurs, X(¢) has the same probability law as the

process lW(t)l, where W(t) is a Brownian motion with parameters

w(2)=(signz):
0‘2;\,(2) = of(lzl) = constant.

for all z in the state-space I. 0
Thus, the reflecting barrier phenomenon is equivalent to setting
X(t) = IW(tﬂ, where W(t) is a Brownian motion on (-4, a) having parameters

given by Lemma 2. Hence, the stopping rule (4-26) can be modified as
= inf(t: [W(t] 2 a)

which is the first exit time from the interval (-, a). Thus, the reflected
Brownian motion which describes Page’s cumsum procedure is transformed
to a nonreflected Brownian motion to which we can apply the results
obtained for regular diffusions.

Recall the definition of the Green function given by (4-15). Then, for
the process X(t) in terms of the process W(t), the scale density function (4-10)

is given by

_J'Zzu(g)
@y=e T

2
_ (~2zk/o
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Since the initial value in our case (Page’s Procedure) is x = 0, we get the Green

function for the cumsum procedure (with b = —) for the no change

hypothesis:
( 2
IO o~2ulk/o? g J“ —2uk/o? g,
2=4 Z a<0<z<a
[ J'a o~ 2ulk/ o ] o2 . ¢~ 2elk/0?
-a
G(0,z) =+
Jﬂ o~2utk/a? g, J’z p-2ulk/o? 1
230 5 -4 a<z<0<a
[ fa (~2ulk/c du] o2 . ~2k/a?
Now define y=k/ o2
i J“““(OIZ) g—2luly du- J a . g~ 2uly du
=2 4 max(z,0) , -a<z<ag

o2 [ BTy

2lzly
_ e . a “2uy
= jlzl e ““Tdu.
1- eZ(Izl—a)y . 435
= —_— —_ < —_
% a<z<a )

This result agrees with the result shown by Srivastava and Wu (Srivastava
and Wuy, 1990) except that by (4-35) it is assumed that the process has a general
diffusion parameter o?. Hence, from (4-16), ARLy is given by

ARLj = J'fa G(0,z)dz
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and a direct calculation yields the same result as given by (4-33). Using these
results, we get from (4-25) the stationary density of the process X(t) defined by
(4-26) is given by (y is a stationary state of the process X(t))

G(0,
a(ylx=0)=a—(——y—)—— 0<y<a
_1- g~21(a-y)
1- e—-Zay
a-
2y
Thus, using (4-34), ARL is obtained as
—_— aq
ARL, (0) = [PARL,(y)- a{ylx = O)y
l a —2 * 2 2
= — N [1 ,~27(a- y)J[( Y2y *—e 27V 472 “]dy
Z[a- }-(;Hk)r*
2y

Wl 1o,2m J2vta _ (r*-7)a _
}”’[az—%(1—(“2}0)6'27“)}%"27“ lme ~ ¢ - 1.¢ +3(y y)a-1
2y 2y 2y 2(y*-7)

(r*/y)u+k)e?® +2m-1

(4-36)

where:

y=k/o? (before shift)

=(u+k)/ o? (after shift).
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Having calculated ARL,(y) and ARL ,(0) yields an analytical approximation
to the bias as defined in (4-30).

D. RESULTS
Using equations (4-33) and (4-36) for calculating ARLy; and ARL,(0)

respectively, the error (bias) term has been calculated via equation (4-30):

bias (O"u) = ARL”(O) - ARL F(O).

For the symmetric case k = -u/2, y=-u/20? (before change) and y* = u/20?
(after change). The reason for this assumption is that it has been shown
(Bagshaw and Johnson, 1975) that this is the optimal reference value if the
objective is to minimize the ARL, function.

Figure 4.4 illustrates the bias term as a function of the drift. For lower
values of the reference value k the bias term is in the order of about 10
samples.

Figure 4.5 illustrates the effect of the initial value on the delay of the
cumsum procedure for an initial value of y = 5.

Figure 4.6 illustrates the ARL function for both the delay and the mean
time between false alarms, as obtained by using the Brownian motion

approximations.
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Figure 4.4. The Bias Term as a Function of the Drift.
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Figure 4.5. The Effect of the Initial Point y on the Delay
Symmetric Case k = —/2
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Figure 4.6. The ARL((0) and ARL,(0) Functions as a Function of the Drift
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E. SUMMARY

In this chapter an additional viewpoint to the analysis of cumsum
procedures was introduced by using the Brownian motion approximations
for stopping times. The problem of determining the probability, the average,
and some general cost function of the stopping time was shown to be reduced
to a closed form.

Next, the behavior of the diffusion process was investigated for two cases.
In the first case, the cumsum test was shown to be modeled as a diffusion
instantaneous return process which enabled the derivation of the stationary
density of the diffusion, thus representing the density of the cumsum process.
In the second case, the behavior of the diffusion process near a reflecting
boundary was investigated and shown to be the key to determining the
approximation of the ARL function for cumsum procedures. Finally, a new
error (bias) term was developed allowing one to predict ihe average error in
the delay for detection. Also, a new procedure of “tuning” th. diffusion
parameters to a given problem was introduced. The drift parameter was
shown (as expected) to be the most influential parameter for the

approximation.

162




V. QUICKEST DISORDER DETECTION METHODS: THE BAYESIAN
FRAMEWORK

A. INTRODUCTION

Consider once again the disorder formulation of (1-2), where the
observations xj, x2, ... are i.i.d. random variables, such that up to a certain time
v>1,xy,.., X, are identically distributed with distribution Py(x), while x,,
Xys+1, ..., are identically distributed with another distribution Py(x), where Po(x)
and Py(x) do not depend on v. In the non-Bayesian formulation the random
time v is considered as a parameter, and this formulation leads to classical
problems of hypothesis testing. By the Bayesian approach, the parameter v is
considered as a random wvariable with a certain distribution. As in the non-
Bayesian approach, we shall be concerned mainly with the problem of how to
use the observations to determine as quickly as possible the time v, or the
“disorder” situation, for a given false alarm ratio. Shiryayev (Shiryayev, 1978)
and Roberts (Roberts, 1966) independently proposed an approach similar to
cumsum procedures. We shall refer only to Shiryayev and use his notation.

Shiryayev solved the problem of quickest disorder detection subject to a
constraint on the probability of false alarms Pr{N < v} < a for all v (where N is
the stopping time) in the Bayesian framework.

The following section gives a short presentation of his work and some
important results which will be used next to establish new results.

This chapter is organized as follows: In Section B we introduce

Shiryayev’s results which are relevant to our case, and form the basic




underlying observation process which is used to solve the Bayes version of
the cumsum procedures. Section C presents 2 new approach to evaluate the
performance of the Bayes version for cumsum procedures. The analysis is
based on the Shiryayev optimal Bayes solution (Shiryayev, 1978) and the
modification of the double procedure algorithm of Assaf and Ritov (Assaf
and Ritov, 1988) and uses Brownian motion approximations to solve the
Bayes problem.

Finally, Section D contains a short summary of the results.

B. BAYESIAN APPROACH TO CUMSUM PROCEDURES APPROXIMATED
BY BROWNIAN MOTION

1. Problem Formulation

As mentioned in the introduction, we will follow the work done by
Shiryayev (Shiryayev, 1978), thereby, a new derivation of the performance of
the cumsum procedure will be introduced in the Bayesian framework, using
some of Shiryayev’s results. The problem will be presented in terms of a
Brownian motion process which approximates the cumsum behavior (see
Chapter IV).

Consider a Brownian motion process {W(t), t 2 ¢}, which during the
time interval {0,v] has zero drift, and during (v,=) has drift u > 0, where v < e
and p are unknown parameters. The process W(t) satisfies the stochastic

differential equation

dW, = u(t-v)"dt+odB,, wy=0
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where (@)* = max(0,a2) and B(t) is a standard Brownian motion with B(0) = 0.

In other words, the structure of the observed process is

{ O'Bt t<v

Wt=
u(t-v)+oB, t2v

(5-1)
where v is considered as the (unknown) “disorder” time in which a disorder
takes place in the observed process, and the local drift shifts from zero to p.

In what follows we assume that v is a non negative random variable with

a priori distribution
Pr{v=0}=pp, Pr{v2t|v>0}=e_'u (5-2)

where pg and 4 are known constants. Let N be the stopping variable which
defines a certain class of detection rules ¢. The class ¢ of those solution rules
for which N € ¢ is finite with probability one, is denoted by A.

For every ¢ € 4, let
R(¢,po)=Pr{N < v}+c- E{(N - v)*}

be the risk consisting of the probability of a false alarm Pr{N < v) and the
average delay of detecting the disorder correctly, E {N-vIN 2 v}. The cost of
one observation is assumed to be ¢ 2 0. Thus, the cost of the false alarm
compared to the cost of the delay in detection is determined by the value of c.

Define

p(N*)= inf R(6.p0) (5-3)

where N* is the optimum stopping rule which minimizes the cost function.

Hence, the problem can be slightly changed, i.e., to find among all the rules
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¢ € A with a given probability of false alarm a = Pr{N < v}, a rule N*e ¢
which guarantees the minimum of the mean time of delay, if the detection

was correctly done, i.e., such that

D(a) = ;:e'th{N*—le*z v} (5-4)

where N* is called the Bayes time. Thus, the Bayes problem of quickest
detection can be formuiated in the following way:

For a given false alarm probability a = Pr{N <vj}, find the observation
method with the minimum average delay, (which minimizes the risk (5-3)).
The following theorem establishes the optimum observation method in the

class of decision functions ¢ ¢ A.

2. The Optimum Bayes Solution
Theorem (Shiryayev, 1978): For a given false alarm probability
Pr{N < v} <a < 1, the optimum observation method for the problem of
minimizing the average delay as defined by (5-4) consists of observing the

process

Z,=Pr{vst|Ws, sst} (5-5)

with the initial condition Zg = pg £ 1 and deciding that a disorder is present

when a threshold a < 1 is first attained. Hence the stopping rule is given by

N =inf(t: t20, Z,2a}

where a = 1-a. The process Z; satisfies the following differential equation:

dz, =A(1—Z,)dt+%z,(l-z,)d§, Zy=z (5-¢€)

166




For the proof of optimality of N, see Shiryayev (Shiryayev, 1978,
Ch. 4). The theorem gives two important results: First, the structure of
optimal Bayes time N* solutions consists of observing the current posteriori
probability that the change has already occurred. The process W; is observed
until the process Z; reaches (at time N*) for the first time a certain level a.

Second, Z, is a diffusion process with time homogeneous coefficients given by
p(z) = A(1-2)

(5-7)
o*(z)=[(u / 0)-2(1-2)]

where 1 and o are the time homogeneous coefficients of the observation
process (5-1). Notice that when A — 0, i.e., when the mean time at which the
disorder occurs E{v} = A-! tends to infinity, hence u(z) = 0 and the diffusion Z,
has a zero drift. Notice also that in this case it is natural to assume that a — 1.
This situation indicates that the disorder appears on the background of an
establisned stationary regime. Shiryayev solved the problem of quickest
detection under this assumption. For a given mean time between false
aiarms T, under the optimal method ot observation, the mean delay time
D(T) is given by
D(T)=E{N - VN 2 v}

= %{log(yT)—l——C}

where
y =u? /207
C =0.577...= Euler constant
T=(1-a)/4
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Notice that the assumption that the disorder is preceded by a long process of
observation in which a stationary regime is established implies that A — 0,
a — 1, but such that T = (1-a)/A is fixed.

The results established in this section, in particular the diffusion type
behavior of the optimal observation method, namely, the posterior
probability of change, motivates a new formulation of the quickest detection
of cumsum procedures and will be presented in the next section. The analysis

will make use of the theory of diffusion processes established in Chapter IV.

C. THE BAYES SOLUTION TO CUMSUM PROCEDURES

The framework set by Shiryayev enables a convenient formulation of
quickest detection problem for cumsum in the Bayesian framework. Hereby,
there analysis of Shiryayev (Shiryayev, 1978) and Assaf and Ritov (Assaf and
Ritov, 1988) is modified to cbtain a new performance analysis of the optimal

Bayesian stopping time solution for cumsum procedures.

1. Problem Formulation

The behavior of cumsum procedures as processes which exhibit
renewal properties (Chapter II) and which can be described by instantaneous
return processes (Chapter 1V) establishes the observation that for a general
cumsum procedure, the process of local minima (or local maxima) results in
regimes (i.e. periods between successive local minima points) in which the
diffusion approximation has a certain drift. The disorder occurs in one of the
regimes, where the diffusion approximation will exhibit a change in the drift.
The problem of quickest detection is concerned with the minimization of the

average number of bad regimes which are mistakenly accepted during one
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cycle, i.e., between two successive alarms. Notice that if the disorder occurred
in the last regime in the cycle, then the average delay is given by "ARL u(x0) as
defined in (4-29). Let L be the number of regimes in one cycle. Thus, the first
L-1 regimes are accepted, each time the present regime is accepted the test
continues to the next regime, while the last one is rejected and produces the
alarm. Let X; be the set of observations within the regimes, i.e., X; denotes the
observation set within regime 1, etc. Assume that the (true) change occur-ed
in regime v. Thus, X, X1, ..., X,.1 are independently distributed according to
some Py while x, xy41, ..., are independently distributed to some P;.
Assumption 1: Both Py and P; are the normal distributions with known
means gy and y; and common variance o2.

Assumption 2: It is assumed that the change occurs only between regimes
and not within a regime. This assumption can be justified by the fact that by
using the ladder variable approach it was shown in Chapter II that the process
of local minima reflects the set of time instants which are more likely to be
the change points. Moreover, it was shown (2-33) that the actual number of
regimes within a cycle is geometrically distributed. Following Assumption 2
we establish the last assumption.

Assumption 3. The change regime v has a prior which is geometrically

distributed with a known parameter 0 < p < 1,i.e, Pr{v=n} =pg™-lforn=>1i.

Let L be a stopping time for declaring a change. Let a = Pr(L < v} be the
probability of false alarm and let D = E{L-v}" be the expected number of
regimes which are mistakenly accepted in one cycle (i.e., which are

mistakenly identified as regimes containing “no change” information).
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Consider the following version of the optimal problem: find a
stopping time L which minimizes D subject to the constraints @ and ARLg(-),
where a is a given probability of false alarm and ARL(-) is the mean time

between false alarms defined in (4-29)

2. Optimal Bayes Solution
The solutior of the optimal Bayes problem is given by (5-5) and is
denoted as the Z process. For any regime, Z; is the “current” posterior

probability that the change has already occurred given the first £ regimes.

Zy=Pr{v<{Xo,Xy,..., X} £=0,1,2,.... (5-9)

Due to Shiryayev results, (5-9) is defined as the observed process which

behaves like a diffusion process with time homogeneous coefficients given by

Hlz)=0 (5-10)
o?(2)=[(an / 0)z(1-2))*
where Al = -Uo.

Notice that the underlying model assumes that within a regime the cumsum
behaves like a Brownian motion with drift parameter g or y; and variance
parameter o2. The corresponding observed process (5-9) has zero drift
parameter due to the fact that it is assumed that the change does not occur
within the regime. Notice that this assumption results in a natural scaled
diffusion whose scale function is linear, S(z) = z.

The observed Z, process is defined on the state-space I = (0,1). Let
0 <b<a< 1 The optimal stopping rule is defined as follows:

* accept the present regime and move to the next one whenever Z,<b.
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¢ continue sampling within the present regime as long as b< Z,<a.
* reject the present regime and declare a disorder as soon as Z,2a.
Thus, the stopping regime is given by
L =inf{t: Z,2 a).

The initial value of Z at the first regime is zg = p while a decision to accept a

certain regime and to move to a next one results in an initial condition
Zp=b+p(1-b). (5-11)

This result is due to the fact that for any regime in the cycle except the last one
the test is terminated at the lower boundary, Z,=b 0<{<L-1. We obtain
(5-11) by using the law of total probability. All the regimes following the first
one have the same probabilistic behavior. Thus, their initial z values are

given by (5-11). See Figure 5.1 for a pictorial illustration.

3. Cumsum Performance Analysis

The goal of this section is to find the relationship between the test
parameters 4, b, and p and the delay D and the probability of false alarm a. To
start the analysis we need to find E{L}, the average number of regimes within
a cycle. Note that L is modified geometrically distributed since L is a mixture
of two random variables, the first of which is identically zero and the second
of which is geometric (Assaf and Ritov, 1988). Hence, the probability of
success p should be calculated when the initial value is Zg and the probability

of failure g should be calculated with iritial value zo.
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Z,=Pr{v<n|Xg Xi,... X}

Figure 5.1. The Observed Diffusion Process z(n)

E{L}= %
_ Pr{z(n) = b}
Pr{z(n) = a}

20}

- Pr{hitting a before Hinitial regime value 20} '

Pr{hitting b before dfinitial regime value

Recall the results obtained for a general diffusion process Z; for solving for
the probability of hitting the boundary a before b as given by equation (4-4).
The solution is given by (4-12).

u(zp) = PriT@) < T(h) | 2(0) =29} b<zg<a,

hence, E[L) can be obtained by
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E(y = 1=4%0) (5-12)

u(zo)
Since the observed diffusion Z, has zero drift coefficient within any regime,

the Z process has a natural scale function S(z) = z. Thus, using (4-17) we

obtain

which results in
E{L} = (a-z0)/(Zo-b).
Using Z, = b + p(1-h), the expected number of regimes per cycle is given by
E{L} = (a-zp)/ p(1-b). (5-13)
Having derived an explicit form for the of average number of
regimes per cycle E{t}, enables one to show the relationship between «a
\probability of false alarms) and D (delay) with the test parameters a, b, and p.
To compute «a, notice that when the observed process

Zy=Prlivst | Xo, ..., Xi} crosses the upper boundary a and causes an alarm, then

Zy=aor Priv<t | Xo, ..., Xi} = a, thus it follows that 1-a =a, or

a=1-q. (5-14)

To compute D = E{L-v}*, notice that Z, is the expectea value, using posterior

information of the indicator function I(v<s (Shiryayev, 1978), i.e.
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0 v>{
hence
Pr{I(yey = 1Xo,.-.. X} = Pr{v < 4X,... X}
=27,
Thus,
D=E{L-v}
L
- EE{I(VSMXO,...,X,}

= E{iz,}. (5-15)
£=1

We obtain (5-15) which is consistent with Shiryayev’s result, but here the
derivation is done in a much simpler way. Since for 0 < £ <L-1 the

Z process terminates by «crossing the lower boundary, thus

Zy=btfort=0,.. L-1. Hence,
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=(a-2z9)b/ p(1-b). (5-16)

4. Asymptotic Analysis

In this section we are concerned with the asymptotic analysis of the
delay D asp — 0. Since 1/p determines the average rate of changes, this
asymptotic analysis will indicate the performance of the optimal algorithm
when the rate of changes is small. Hereby we shall consider the constrained
version of minimizing D subject to given values of Pr{v <L} = a and
ARLy(Zp) = T, the regime time.

The analysis starts with computation of the average cycle time E{C}
which is needed to analyze the asymptotic average delay. The diffusion type
behavior of the observed process Z, enables the use of techniques introduced
in Chapter IV to obtain the result for E{C}. Finally, we obtain an asymptotic

approximation for the average delay.

a. Calculation of the Mean Cycle Time E(C]
Figure 5.1 is the appropriate picture to guide the following

analysis. To compute the expected cycle time, E{C}, notice that the first regime




run length in a cycle starts with initial condition zg, while all the following
regimes start with initial condition Zy given by (5-11). Let N be the sampling
time of the first regime in a cycle, then E{N;} is the expected time it takes the
diffusion to reach b or a. Similarly, let N be the time needed for the diffusion
starting at Zgto reach b or a. The total run length of a cycle is given by
C= Z:‘:lN,- where L is the stopping regime and with Nj, N, ..., independent
and identically distributed like N . Applying Wald’s equation and using
(5-13) we obtain

E{C} = E{No}+(E{L}-1)-E{N}
= E{No}+{(a-z0)/ p(1-b)-1]E{N}. (5-17)

To make the computation simpler we consider the long run

situation, using the simplification zg = Zy. In this case (5-17) becomes

E{C} = E{L}-E{N]
=[(a-2)/ p(1-b)]- E{N}

=[(a-z29)/ p(1-b)]- ARLy(Z) (5-18)

The last result is due to the fact that E{ N } is the average regime time which
is by definition equal to ARLy(Zp) since within the regime the drift coefficient

is zero.

b. Calculation of ARLy(z)
The observed diffusion Z, is in natural scale since the scale

measure is linear (see 4-17), i.e.,

5(z) =z.
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Using the expression of the variance coefficient (5-7) we obtain from (4-15)

the Green function for the observed diffusion Z,

(z—b)a-

£)
<z<&€<a
Glog)=] (87 c(r) (a )(z)cigl &)
2 <é<z<a
(ap / 6)(a-b)EX(1-¢)

The Average Run Length ARLp(z) is given
(Assaf and Ritov, 1988),

ARLg(z) = E{N}

= [,G(z,8)d¢
_ 1 L y2a a(l—z)} 1 o{z(l-—b)H
(Ay/Zo)z(a—b)t( X2 1)log{(l-—a)z +(a-2)(1-2b)log b(1-z)

(5-19)
For the limiting situation

limZp = lim{b+ p(1-b)} > b
p—0 p—0

it follows that in this situation ARLg(b) — 0 (as anticipated). Thus, it follows

that for the constraint ARLg(z) = T to be satisfied, we need b — 0 resulting in

0/0 situation.
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. L 1 (b+p(1-b))(1-b)] ]
;ISBARLO(ZO)_PZ%(A#/ZU)Z(a~b) (a—b—p(l-b))(l—Zb)log{ b1 b= p(1-1) }J

1
= lim ———[a log(1+p/b
@38(4;1/20)%[ g(1+p/b)]

1

Notice that ARLy(Z¢) approaches in the limit to a finite value.

¢. Asympiotic Delay

For the limiting situation we also obtain the following

approximations:
lim E{L} = lim(1-%,)/ p(1-b)
z—0 z50
b—-0 b—0
=a / p
=(l-a)/p (5-21)
and
lim E{C} =(1-a)- ARLy(0)/ p (5-22)
30

and for the constraint ARLg(0) = T we need

p/b= eT(A“)z/Zoz -1

2 2
~ eT(4u)*/20% (5~23)

Substituting (5-23) in equation (5-16) for D, we obtain
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imD=ab/p
290

=(1-a)p/p
=(1_a)/[eT<A#>2/202} (5-24)

Hence, the asymptotic average delay is given in terms of the constraints a and
T and the signal parameters Ay = p1—fp and o2.
Since the ratio Au/ o can describe a measure for signal to noise

ratio, the average delay (5-24) can also be described as
2
Dz=(1-a)/ (e(T/z)(SNR) ) (5-25)

Notice that in the limiting situation the average delay does not depend on p
Once again, as for Shiryayev’s result (5-8), as p - 0, @ — 1, and the delay D

approaches the limit to a finite value.

D. SUMMARY

The fact the cumsum procedure can be viewed as a process of local
minima (or respectively, maxima) enabled the use of the Brownian motion
approixmation to the optimal observation process Z,. With the aid of these
tools, ARLg(-) given by equation (5-20) and the asymptotic delay (5-25) were

derived and shown to reach finite values.
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VI. DETECTION-ESTIMATION ALGORITHM FOR NOISY DATA WITH
ABRUPT CHANGES (DISCONTINUITIES) MODELED BY THE PIECEWISE
STATE-SPACE MODEL

A. INTRODUCTION

Until now, all of the chapters dealt with problems of disorder as defined
for Types 1, 2, and 3 (see Chapter 1). In this chapter we present a Type 4
problem, namely, an initial condition disruption problem. The use of state-
space models as descriptive models for the initial condition disruption allows
the joint estimation of the change iime v and the state-space parameter
representing the observed signal. This methods seems to be efficient
compared to GLR methods for certain classes of problems since the Kalman
filter gains and covariance matrix can be computed off-line if the state-space
matrices do not change in time. However, this is not the case for AR or
ARMA modeling in the state-space format.

The problem of detection-estimation or detection-smoothing of signals
with time-varying statistical characteristics is of great interest in many areas of
signal processing. In many cases, prior knowledge of the signal characteristics
can be used to model (using model-based techniques) the non-stationary
behavior. In this section, the statistical changes are modeled by piecewise
deterministic state-space equations with random initial conditions, and
measurements corrupted by additive Gaussian white noise (Cristi, 1988). A
particularly interesting class is the case of signals representable by Auto-

Regressive models with piecewise constant coefficients (Andra-Obrecht. 1988).

180




Also, the class of PSK (Phase Shift Keying) signals enters this category, where
the phase of the sinusoidal carrier is shifted according to the information
(Point, 1987). For the PSK 